3D-printed nanocomposites filled with untreated and surface-modified PTFE powders treated by a Na-naphthalene-system

Yıl 2024, Cilt: 4 Sayı: 2, 530 – 540, 31.07.2024

https://doi.org/10.61112/jiens.1482556

Öz

This study focuses on the mechanical properties of DLP/LCD-type 3D-printed nanocomposites comprised of polyester acrylate resin with DPGDA reactive diluent filled with untreated PTFE and surface-modified PTFE powders by the Na-Naphtalenide system. To obtain the nanocomposites, untreated and surface-modified PTFE powders were incorporated into the resin systems at loading ratios ranging from 1% to 6%. The X-ray photoelectron spectroscopy (XPS) data following the Na-naphthalene system treatment demonstrated the existence of functional groups such as OH, carbonyl, and C=C unsaturation groups on the surface of the untreated PTFE powders. The study showed improvements for the nanocomposites obtained through a DLP/LCD type 3D printer up to a certain ratio in terms of tensile strength, Young’s modulus, Izod impact resistance, and Shore D hardness values. Evaluating the promising samples, the nanocomposites with surface-modified PTFE powders of 2% and 1% showed increases of 5.1% and 7.6% in ultimate tensile strength and Izod impact resistance compared to the unfilled polyester acrylate sample. On the other hand, the nanocomposite with untreated PTFE powders of 1% only showed increases of 2.4% and 3.2% in ultimate tensile strength and Izod impact resistance. Moreover, Young’s modulus showed less decrease for surface-modified PTFE-filled nanocomposites.

Anahtar Kelimeler

DLP/LCD type 3D printer, Surface-modified PTFE powders, Na-naphtalenide system, Acrylate resins, DPGDA reactive diluent

Kaynakça

  • Schittecatte L, Geertsen V, Bonamy D, Nguyen TT, Guénoun P (2023) From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials. MRS Commun. https://link.springer.com/article/10.1557/s43579-023-00352-3
  • Cakir Yigit N, Karagoz I (2023) A review of recent advances in bio-based polymer composite filaments for 3D printing. Polym.-Plast. Technol. Mater. 62(9):1077-1095.
  • Karagöz İ, Bekdemir AD, Tuna Ö (2021) 3B yazıcı teknolojilerindeki kullanılan yöntemler ve gelişmeler üzerine bir derleme. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9(4):1186-1213.
  • Dawood A, Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J. https://www.nature.com/articles/sj.bdj.2015.914
  • Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22.
  • Kim HK, Ju HT, Hong JW (2003) Characterization of UV-cured polyester acrylate films containing acrylate functional polydimethylsiloxane. Eur Polym J 39:2235–2241.
  • Akin E, Çakir M, Demirer H (2023) Multi‐featured epoxy composites filled with surface‐modified PTFE powders treated by Na‐naphthalenide system. J Appl Polym Sci 141.
  • Ayurova OZh, Maksanova LA, Starichenko VF, Shundrin LA, Bodoev, NV, Mognonov, DM (2005) A New Agent for Modification of the Teflon Surface. Russ J Appl Chem 78:850–852.
  • Miller ML, Postal RH, Sawyer PN, Martin JG, Kaplit, MJ (1970) Conditioning polytetrafluoroethylene surfaces for use in vascular prostheses. J Appl Polym Sci 14: 257–266.
  • Jansta J, Dousek FP, Řiha J (1975) Quantitative explanation of the mechanism of corrosion of poly(tetrafluoroethylene) caused by active alkali metals. J Appl Polym Sci, 19:3201–3210.
  • Prasertsri S, Rattanasom N (2012) Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: Mechanical and dynamic properties. Polym Test, 31:593–605.
  • Sadej M, Andrzejewska E (2016) Silica/aluminum oxide hybrid as a filler for photocurable composites. Prog Org Coat, 94:1–8.
  • ZK Lahijania Y, Mohseni M, Bastani S (2014) Characterization of mechanical behavior of UV cured urethane acrylate nanocomposite films loaded with silane treated nanosilica by the aid of nanoindentation and nanoscratch experiments. Tribol Int, 69:10–18.
  • Yan Y, Jia Z, Yang Y (2011) Preparation and Mechanical Properties of PTFE/Nano-EG Composites Reinforced with Nanoparticles. Procedia Environ Sci 10:929–935.
  • Benderly AA (1962) Treatment of teflon to promote bondability. J Appl Polym Sci 6:221–225.
  • Mhatre RA, Mahanwar PA, Shertukde VV, Bambole VA (2010) UV curable polyester‐based polyurethane acrylate nanocoating. Pigm Resin Technol 39:268–276.
  • Jagtap AR, More A (2021) Developments in reactive diluents: a review. Polym Bull 79:5667–5708.
  • Wu G, Zang H, Zhang H (2020) Preparation and performance of UV-curable waterborne polyurethane prepared using dipentaerythritol hexaacrylate/dipropylene glycol diacrylate monomers. J Macromol Sci Part A 57:927–934.
  • Çakir M, Akin, E (2021) Mechanical properties of low‐density heat‐resistant polyimide‐based advanced composite sandwich panels. Polym Compos 43:827–847.
  • Çakir M, Akin E, Artir R (2018) Coating properties of 1H,1H-perfluorooctylamine-terminated polyimides based on hexafluoroisopropylidene diphthalic anhydride and 1,4,5,8 naphthalenetetracarboxylic dianhydride. J Coat Technol Res 16: 699–710.
  • Çakir M, Akin E, Ulak P (2018) Characterization of Coating Properties of UV-curable Fluorine-Containing Coatings. JSE 5:836–844.
  • Walker BM (1982) Thermoplastic elastomers — overview and trends. J Elastomers Plast 14:139–147.
  • Dhanumalayan E, Joshi GM (2018) Performance properties and applications of polytetrafluoroethylene (PTFE)—a review. Adv Compos Hybrid Mater 1:247–268.
  • Biswas SK, Vijayan K (1992) Friction and wear of PTFE — a review. Wear 158:193–211.
  • Kang ET, Neoh KG, Tan KL, Senn BC, Pigram PJ, Liesegang J (1997) Surface modification and functionalization of polytetrafluoroethylene films via graft copolymerization. Polym Advan Technol 8:683–692.
  • Li X, Zhang L, Wang H, Zhao Y (2022) Effect of chemical activation on surface properties of poly(tetrafluoroethylene-co-hexafluoropropylene) film. Polym 14:4606.
  • Kang ET, Zhang Y (2000) Surface modification of fluoropolymers via molecular Design Adv Mater Lett 12:1481–1494.
  • Shen JT, Top M, Pei YT, De Hosson, JThM (2015) Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO2 particles. Wear, 322–323:171–180.
  • Xian G, Walter R, Haupert F (2006) Friction and wear of epoxy/TiO2 nanocomposites: Influence of additional short carbon fibers, Aramid and PTFE particles. Compos Sci Technol 66:3199–3209.
  • Roina Y, Gonçalves A, Fregnaux M, Auber F, Herlem G (2022) Sodium naphthalenide diglyme solution for etching PTFE, characterizations and molecular modelization. ChemistrySelect 7.
  • S Wu (1982) Polymer interface and adhesion. CRC Press, Florida.

İşlenmemiş PTFE ve Na-naftalenid sistemi ile yüzeyi modifiye edilmiş PTFE tozlarıyla doldurulmuş nanokompozitlerin DLP/LCD tipi 3D yazıcı kullanılarak üretilmesi

Yıl 2024, Cilt: 4 Sayı: 2, 530 – 540, 31.07.2024

https://doi.org/10.61112/jiens.1482556

Öz

Bu çalışma, modifiye edilmemiş PTFE ve Na-Naftalenid sistemi ile yüzeyi modifiye edilmiş PTFE tozları ile doldurulmuş DPGDA reaktif seyrelticili polyester akrilat reçinesinden oluşan DLP/LCD tipi 3D yazıcı ile yazılmış nanokompozitlerin mekanik özelliklerine odaklanmaktadır. Nanokompozitler her iki PTFE tozun %1 ila %6 arasında değişen yükleme oranlarında oluşturulmuştur. Na-Naftalen sistemi ile yapılan yüzey modifikasyon işleminden sonra yapılan X ışını foto elektron spektroskopisi verileri, OH, karbonil, C=C doymamış çift bağlar gibi fonksiyonel grupların PTFE tozlarının yüzeyinde bulunduğunu gösterdi. Çalışmada, DLP/LCD tipi 3D yazıcı ile elde edilen işlem görmemiş PTFE ve yüzeyi modifiye edilmiş PTFE tozları dolgulu nanokompozitlerin belirli bir orana kadar çekme dayanımı, Young modülü, Izod darbe dayanımı ve Shore D sertlik değerlerinde iyileşmeler olduğu ortaya konmuştur.

Anahtar Kelimeler

DLP/LCD type 3D printer, Surface-modified PTFE powders, Na-naphtalenide system, Acrylate resins, DPGDA reactive diluent

Kaynakça

  • Schittecatte L, Geertsen V, Bonamy D, Nguyen TT, Guénoun P (2023) From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials. MRS Commun. https://link.springer.com/article/10.1557/s43579-023-00352-3
  • Cakir Yigit N, Karagoz I (2023) A review of recent advances in bio-based polymer composite filaments for 3D printing. Polym.-Plast. Technol. Mater. 62(9):1077-1095.
  • Karagöz İ, Bekdemir AD, Tuna Ö (2021) 3B yazıcı teknolojilerindeki kullanılan yöntemler ve gelişmeler üzerine bir derleme. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9(4):1186-1213.
  • Dawood A, Marti B, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J. https://www.nature.com/articles/sj.bdj.2015.914
  • Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22.
  • Kim HK, Ju HT, Hong JW (2003) Characterization of UV-cured polyester acrylate films containing acrylate functional polydimethylsiloxane. Eur Polym J 39:2235–2241.
  • Akin E, Çakir M, Demirer H (2023) Multi‐featured epoxy composites filled with surface‐modified PTFE powders treated by Na‐naphthalenide system. J Appl Polym Sci 141.
  • Ayurova OZh, Maksanova LA, Starichenko VF, Shundrin LA, Bodoev, NV, Mognonov, DM (2005) A New Agent for Modification of the Teflon Surface. Russ J Appl Chem 78:850–852.
  • Miller ML, Postal RH, Sawyer PN, Martin JG, Kaplit, MJ (1970) Conditioning polytetrafluoroethylene surfaces for use in vascular prostheses. J Appl Polym Sci 14: 257–266.
  • Jansta J, Dousek FP, Řiha J (1975) Quantitative explanation of the mechanism of corrosion of poly(tetrafluoroethylene) caused by active alkali metals. J Appl Polym Sci, 19:3201–3210.
  • Prasertsri S, Rattanasom N (2012) Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: Mechanical and dynamic properties. Polym Test, 31:593–605.
  • Sadej M, Andrzejewska E (2016) Silica/aluminum oxide hybrid as a filler for photocurable composites. Prog Org Coat, 94:1–8.
  • ZK Lahijania Y, Mohseni M, Bastani S (2014) Characterization of mechanical behavior of UV cured urethane acrylate nanocomposite films loaded with silane treated nanosilica by the aid of nanoindentation and nanoscratch experiments. Tribol Int, 69:10–18.
  • Yan Y, Jia Z, Yang Y (2011) Preparation and Mechanical Properties of PTFE/Nano-EG Composites Reinforced with Nanoparticles. Procedia Environ Sci 10:929–935.
  • Benderly AA (1962) Treatment of teflon to promote bondability. J Appl Polym Sci 6:221–225.
  • Mhatre RA, Mahanwar PA, Shertukde VV, Bambole VA (2010) UV curable polyester‐based polyurethane acrylate nanocoating. Pigm Resin Technol 39:268–276.
  • Jagtap AR, More A (2021) Developments in reactive diluents: a review. Polym Bull 79:5667–5708.
  • Wu G, Zang H, Zhang H (2020) Preparation and performance of UV-curable waterborne polyurethane prepared using dipentaerythritol hexaacrylate/dipropylene glycol diacrylate monomers. J Macromol Sci Part A 57:927–934.
  • Çakir M, Akin, E (2021) Mechanical properties of low‐density heat‐resistant polyimide‐based advanced composite sandwich panels. Polym Compos 43:827–847.
  • Çakir M, Akin E, Artir R (2018) Coating properties of 1H,1H-perfluorooctylamine-terminated polyimides based on hexafluoroisopropylidene diphthalic anhydride and 1,4,5,8 naphthalenetetracarboxylic dianhydride. J Coat Technol Res 16: 699–710.
  • Çakir M, Akin E, Ulak P (2018) Characterization of Coating Properties of UV-curable Fluorine-Containing Coatings. JSE 5:836–844.
  • Walker BM (1982) Thermoplastic elastomers — overview and trends. J Elastomers Plast 14:139–147.
  • Dhanumalayan E, Joshi GM (2018) Performance properties and applications of polytetrafluoroethylene (PTFE)—a review. Adv Compos Hybrid Mater 1:247–268.
  • Biswas SK, Vijayan K (1992) Friction and wear of PTFE — a review. Wear 158:193–211.
  • Kang ET, Neoh KG, Tan KL, Senn BC, Pigram PJ, Liesegang J (1997) Surface modification and functionalization of polytetrafluoroethylene films via graft copolymerization. Polym Advan Technol 8:683–692.
  • Li X, Zhang L, Wang H, Zhao Y (2022) Effect of chemical activation on surface properties of poly(tetrafluoroethylene-co-hexafluoropropylene) film. Polym 14:4606.
  • Kang ET, Zhang Y (2000) Surface modification of fluoropolymers via molecular Design Adv Mater Lett 12:1481–1494.
  • Shen JT, Top M, Pei YT, De Hosson, JThM (2015) Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO2 particles. Wear, 322–323:171–180.
  • Xian G, Walter R, Haupert F (2006) Friction and wear of epoxy/TiO2 nanocomposites: Influence of additional short carbon fibers, Aramid and PTFE particles. Compos Sci Technol 66:3199–3209.
  • Roina Y, Gonçalves A, Fregnaux M, Auber F, Herlem G (2022) Sodium naphthalenide diglyme solution for etching PTFE, characterizations and molecular modelization. ChemistrySelect 7.
  • S Wu (1982) Polymer interface and adhesion. CRC Press, Florida.

Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Fiziği, Polimer Teknolojisi, Polimerler ve Plastikler
BölümAraştırma Makaleleri
Yazarlar

Mustafa Çakır MARMARA UNIVERSITY 0000-0002-9409-2684 Türkiye

Emre Akın MARMARA ÜNİVERSİTESİ 0000-0003-2067-1488 Türkiye

Yayımlanma Tarihi31 Temmuz 2024
Gönderilme Tarihi11 Mayıs 2024
Kabul Tarihi16 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 4 Sayı: 2

Kaynak Göster

APAÇakır, M., & Akın, E. (2024). 3D-printed nanocomposites filled with untreated and surface-modified PTFE powders treated by a Na-naphthalene-system. Journal of Innovative Engineering and Natural Science, 4(2), 530-540. https://doi.org/10.61112/jiens.1482556

Download or read online: Click here