Investigation of the compression behavior of ABS/EVA polymer blends

Yıl 2024, Cilt: 7 Sayı: 1, 12 – 17, 30.06.2024

Öz

Thermoplastics offer superior mechanical properties, recyclability, lightweight, and manufacturability that make them attractive replacements for metals in various engineering applications. Polymer blending is a popular technique for improving polymer matrix properties. It eliminates the need for new polymer synthesis and is a simple and rapid process. In this study, the effect of blend composition and strain rate on the compression behavior of ABS/EVA polymer blends is investigated. Blends containing 10% to 30% EVA were melt-mixed using a twin-screw extruder and then used to produce compression test specimens using Fused Filament Fabrication (FFF). Fourier Transform Infrared (FTIR) spectrometry studies have been used for the chemical characterization of the blends and have provided insight into the chemical properties of the blends. Uniaxial compression tests were also performed to investigate the effect of EVA composition and strain rate on the compression behavior of ABS/EVA blends. The relationships between EVA blend composition and compression behavior at varying strain rates were detailed and disclosed.

Anahtar Kelimeler

ABS, EVA, Polymer blend, FFF, Compression behavior

Kaynakça

  • Akerlund, E., Diez-Escudero, A., Grzeszczak, A., and Persson, C., The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects, Polymers (Basel), 2022, 14(16)
  • Siviour C. R., and Jordan, J. L., High Strain Rate Mechanics of Polymers: A Review, J. Dyn. Behav. Mater., 2016, 2(1):15–32
  • Wang, Y., Li, X., Chen, Y., and Zhang, C., Strain rate dependent mechanical properties of 3D printed polymer materials using the DLP technique, Addit. Manuf., 2021, 47, 102368
  • Tappa, K., and Jammalamadaka, U., Novel Biomaterials Used in Medical 3D Printing Techniques, J. Funct. Biomater., 2018, 9(1):17
  • Taşdemir, M., and Karatop, Ş., Effect of styrene-isopren-styrene addition on the recycled Polycarbonate/Acrylonitrile-Butadiene-Styrene polymer blends, J. Appl. Polym. Sci., 2006, 101(1):559–566
  • Taşdemir, M., Properties of acrylonitrile-butadiene-styrene/polycarbonate blends with styrene-butadiene-styrene block copolymer, J. Appl. Polym. Sci., 2004, 93(6):2521–2527
  • Tasdemir, M., and Miskioglu, I., Friction and Wear Behaviors of HIPS/SBS Polymer Blends, Int. J. Mater. Mech. Manuf., 2015, 4(2):95–99
  • Shafeeq, V.H., and Unnikrishnan, G., Experimental and theoretical evaluation of mechanical, thermal and morphological features of EVA-millable polyurethane blends, J. Polym. Res., 2020, 27(3):53
  • Rajeshirke, M., Fidan, I., Gupta, A., and Mäntyjärvi, K., Fatigue Analysis of Short Carbon Fiber Reinforced Composite Components Manufactured Using Fiber-Reinforced Additive Manufacturing, 2022, 149–161
  • Kumar, S., Singh, I., Koloor, S. S. R., Kumar, D., and Yahya, M. Y., On Laminated Object Manufactured FDM-Printed ABS/TPU Multimaterial Specimens: An Insight into Mechanical and Morphological Characteristics, Polymers (Basel), 2022, 14(19)
  • Mogan,J., et al., Fused Deposition Modelling of Polymer Composite: A Progress, Polymers (Basel)., 2023, 15(1)
  • Torrado Perez, A. R., Roberson, D. A., and Wicker, R. B., Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials, J. Fail. Anal. Prev., 2014, 14(3):343–353
  • Qin, D., Sang, L., Zhang, Z., Lai, S., and Zhao, Y., Compression Performance and Deformation Behavior of 3D-Printed PLA-Based Lattice Structures, Polymers (Basel)., 2022, 14(5)
  • Cao, L., Xiao, J., Kim, J. K., and Zhang, X., Effect of post-process treatments on mechanical properties and surface characteristics of 3D printed short glass fiber reinforced PLA/TPU using the FDM process, CIRP J. Manuf. Sci. Technol., 2023, 41, 135–143
  • Wu, H., et al., Recent developments in polymers/polymer nanocomposites for additive manufacturing, Prog. Mater. Sci., 2020, 111
  • Doshi, M., Mahale, A., Singh, S. K., and Deshmukh, S., Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: Perspective and prospects, in Materials Today: Proceedings, 2022, 50, 2269–2275
  • Vairis, A., Petousis, M., Vidakis, N., and Savvakis, K., On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts, J. Mater. Eng. Perform., 2016, 25(9):3558–3565
  • Guessasma, S., Abouzaid, K., Belhabib, S., Bassir, D., and Nouri, H., Interfacial Behaviour in Polymer Composites Processed Using Droplet-Based Additive Manufacturing, Polymers (Basel)., 2022, 14(5):1–26
  • Wacharawichanant, S., Noichin, L., and Bannarak, S., Effect of Ethylene-Vinyl Acetate Copolymer on Properties of Acrylonitrile-Butadiene-Styrene/Zinc Oxide Nanocomposites, ASEAN J. Chem. Eng., 2013, 13(1):18
  • Olongal, M., Mohamed Nainar, M. A., Marakkattupurathe, M., Muslim Veettil Asharaf, S., and Athiyanathil, S., Effect of poly(ethylene-co-vinyl acetate) additive on mechanical properties of maleic anhydride-grafted acrylonitrile butadiene styrene for coating applications, J. Vinyl Addit. Technol., 2019, 25(3):287–295
  • Ma, P., Hristova-Bogaerds, D. G., Goossens, J. G. P., Spoelstra, A. B., Zhang, Y., and Lemstra, P. J., “Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents,” Eur. Polym. J., 2012, 48(1):146–154
  • Olongal, M., Mohamed Nainar, M. A., Marakkattupurathe, M., Muslim Veettil Asharaf, S., and Athiyanathil, S., Effect of poly(ethylene-co-vinyl acetate) additive on mechanical properties of maleic anhydride-grafted acrylonitrile butadiene styrene for coating applications, J. Vinyl Addit. Technol., 2019, 25(3):287–295
  • de León, A. S., Domínguez-Calvo, A., and Molina, S. I., Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF), Mater. Des., 2019, 182, 108044
  • Heidari, F., Aghalari, M., Tehran, A. C., and Shelesh-Nezhad, K., Study on the fluidity, mechanical and fracture behavior of ABS/TPU/CNT nanocomposites, J. Thermoplast. Compos. Mater., 2021, 34(8):1037–1051
  • Zhu, J., Hu, Y., Tang, Y., and Wang, B., Effects of styrene–acrylonitrile contents on the properties of ABS/SAN blends for fused deposition modeling, J. Appl. Polym. Sci., 2017, 134(7):1–5
  • Junior, C. Z. P., Peruchi, R. S., de Carvalho Fim, F., Soares, W. D. O. S., & da Silva, L. B., Performance of ethylene vinyl acetate waste (EVA-w) when incorporated into expanded EVA foam for footwear. Journal of Cleaner Production, 2021, 317, 128352
  • Gul, S., Kausar, A., Saeed, S., Muhammad, B., Jabeen, S., & Farooq, M. A study on physical properties of melt blended acrylonitrile butadiene styrene/ethylene vinyl acetate modified with linear low density polyethylene and montmorillonite. Polymer-Plastics Technology and Engineering, 2016, 55(11):1145-1154
  • Mishra, V., Ror, C. K., Negi, S., Kar, S., & Borah, L. N., Development of sustainable 3D printing filaments using recycled/virgin ABS blends: Processing and characterization. Polymer Engineering & Science, 2023, 63(7):1890-1899
  • Adelnia, H., Bidsorkhi, H. C., Ismail, A. F., & Matsuura, T., Gas permeability and permselectivity properties of ethylene vinyl acetate/sepiolite mixed matrix membranes. Separation and Purification Technology, 2015, 146, 351-357
  • Nishida, M., Yamaguchi, M., Todo, M., Takayama, T., Häggblad, H. Å., & Jonsén, P., Evaluation of dynamic compressive properties of PLA polymer blends using split Hopkinson pressure bar. In International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, 2009, 1, 909-915
  • Baligidad, S. M., Kumar, G. C., Maharudresh, A. C., Lekshmi, I. C., Rajasree, S., & Pillai, R., Investigation on strain rate sensitivity of 3D printed sPEEK-HAP/rGO composites. Journal of Manufacturing Processes, 2022, 79, 789-802

Yıl 2024, Cilt: 7 Sayı: 1, 12 – 17, 30.06.2024

Öz

Kaynakça

  • Akerlund, E., Diez-Escudero, A., Grzeszczak, A., and Persson, C., The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects, Polymers (Basel), 2022, 14(16)
  • Siviour C. R., and Jordan, J. L., High Strain Rate Mechanics of Polymers: A Review, J. Dyn. Behav. Mater., 2016, 2(1):15–32
  • Wang, Y., Li, X., Chen, Y., and Zhang, C., Strain rate dependent mechanical properties of 3D printed polymer materials using the DLP technique, Addit. Manuf., 2021, 47, 102368
  • Tappa, K., and Jammalamadaka, U., Novel Biomaterials Used in Medical 3D Printing Techniques, J. Funct. Biomater., 2018, 9(1):17
  • Taşdemir, M., and Karatop, Ş., Effect of styrene-isopren-styrene addition on the recycled Polycarbonate/Acrylonitrile-Butadiene-Styrene polymer blends, J. Appl. Polym. Sci., 2006, 101(1):559–566
  • Taşdemir, M., Properties of acrylonitrile-butadiene-styrene/polycarbonate blends with styrene-butadiene-styrene block copolymer, J. Appl. Polym. Sci., 2004, 93(6):2521–2527
  • Tasdemir, M., and Miskioglu, I., Friction and Wear Behaviors of HIPS/SBS Polymer Blends, Int. J. Mater. Mech. Manuf., 2015, 4(2):95–99
  • Shafeeq, V.H., and Unnikrishnan, G., Experimental and theoretical evaluation of mechanical, thermal and morphological features of EVA-millable polyurethane blends, J. Polym. Res., 2020, 27(3):53
  • Rajeshirke, M., Fidan, I., Gupta, A., and Mäntyjärvi, K., Fatigue Analysis of Short Carbon Fiber Reinforced Composite Components Manufactured Using Fiber-Reinforced Additive Manufacturing, 2022, 149–161
  • Kumar, S., Singh, I., Koloor, S. S. R., Kumar, D., and Yahya, M. Y., On Laminated Object Manufactured FDM-Printed ABS/TPU Multimaterial Specimens: An Insight into Mechanical and Morphological Characteristics, Polymers (Basel), 2022, 14(19)
  • Mogan,J., et al., Fused Deposition Modelling of Polymer Composite: A Progress, Polymers (Basel)., 2023, 15(1)
  • Torrado Perez, A. R., Roberson, D. A., and Wicker, R. B., Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials, J. Fail. Anal. Prev., 2014, 14(3):343–353
  • Qin, D., Sang, L., Zhang, Z., Lai, S., and Zhao, Y., Compression Performance and Deformation Behavior of 3D-Printed PLA-Based Lattice Structures, Polymers (Basel)., 2022, 14(5)
  • Cao, L., Xiao, J., Kim, J. K., and Zhang, X., Effect of post-process treatments on mechanical properties and surface characteristics of 3D printed short glass fiber reinforced PLA/TPU using the FDM process, CIRP J. Manuf. Sci. Technol., 2023, 41, 135–143
  • Wu, H., et al., Recent developments in polymers/polymer nanocomposites for additive manufacturing, Prog. Mater. Sci., 2020, 111
  • Doshi, M., Mahale, A., Singh, S. K., and Deshmukh, S., Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: Perspective and prospects, in Materials Today: Proceedings, 2022, 50, 2269–2275
  • Vairis, A., Petousis, M., Vidakis, N., and Savvakis, K., On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts, J. Mater. Eng. Perform., 2016, 25(9):3558–3565
  • Guessasma, S., Abouzaid, K., Belhabib, S., Bassir, D., and Nouri, H., Interfacial Behaviour in Polymer Composites Processed Using Droplet-Based Additive Manufacturing, Polymers (Basel)., 2022, 14(5):1–26
  • Wacharawichanant, S., Noichin, L., and Bannarak, S., Effect of Ethylene-Vinyl Acetate Copolymer on Properties of Acrylonitrile-Butadiene-Styrene/Zinc Oxide Nanocomposites, ASEAN J. Chem. Eng., 2013, 13(1):18
  • Olongal, M., Mohamed Nainar, M. A., Marakkattupurathe, M., Muslim Veettil Asharaf, S., and Athiyanathil, S., Effect of poly(ethylene-co-vinyl acetate) additive on mechanical properties of maleic anhydride-grafted acrylonitrile butadiene styrene for coating applications, J. Vinyl Addit. Technol., 2019, 25(3):287–295
  • Ma, P., Hristova-Bogaerds, D. G., Goossens, J. G. P., Spoelstra, A. B., Zhang, Y., and Lemstra, P. J., “Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents,” Eur. Polym. J., 2012, 48(1):146–154
  • Olongal, M., Mohamed Nainar, M. A., Marakkattupurathe, M., Muslim Veettil Asharaf, S., and Athiyanathil, S., Effect of poly(ethylene-co-vinyl acetate) additive on mechanical properties of maleic anhydride-grafted acrylonitrile butadiene styrene for coating applications, J. Vinyl Addit. Technol., 2019, 25(3):287–295
  • de León, A. S., Domínguez-Calvo, A., and Molina, S. I., Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF), Mater. Des., 2019, 182, 108044
  • Heidari, F., Aghalari, M., Tehran, A. C., and Shelesh-Nezhad, K., Study on the fluidity, mechanical and fracture behavior of ABS/TPU/CNT nanocomposites, J. Thermoplast. Compos. Mater., 2021, 34(8):1037–1051
  • Zhu, J., Hu, Y., Tang, Y., and Wang, B., Effects of styrene–acrylonitrile contents on the properties of ABS/SAN blends for fused deposition modeling, J. Appl. Polym. Sci., 2017, 134(7):1–5
  • Junior, C. Z. P., Peruchi, R. S., de Carvalho Fim, F., Soares, W. D. O. S., & da Silva, L. B., Performance of ethylene vinyl acetate waste (EVA-w) when incorporated into expanded EVA foam for footwear. Journal of Cleaner Production, 2021, 317, 128352
  • Gul, S., Kausar, A., Saeed, S., Muhammad, B., Jabeen, S., & Farooq, M. A study on physical properties of melt blended acrylonitrile butadiene styrene/ethylene vinyl acetate modified with linear low density polyethylene and montmorillonite. Polymer-Plastics Technology and Engineering, 2016, 55(11):1145-1154
  • Mishra, V., Ror, C. K., Negi, S., Kar, S., & Borah, L. N., Development of sustainable 3D printing filaments using recycled/virgin ABS blends: Processing and characterization. Polymer Engineering & Science, 2023, 63(7):1890-1899
  • Adelnia, H., Bidsorkhi, H. C., Ismail, A. F., & Matsuura, T., Gas permeability and permselectivity properties of ethylene vinyl acetate/sepiolite mixed matrix membranes. Separation and Purification Technology, 2015, 146, 351-357
  • Nishida, M., Yamaguchi, M., Todo, M., Takayama, T., Häggblad, H. Å., & Jonsén, P., Evaluation of dynamic compressive properties of PLA polymer blends using split Hopkinson pressure bar. In International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, 2009, 1, 909-915
  • Baligidad, S. M., Kumar, G. C., Maharudresh, A. C., Lekshmi, I. C., Rajasree, S., & Pillai, R., Investigation on strain rate sensitivity of 3D printed sPEEK-HAP/rGO composites. Journal of Manufacturing Processes, 2022, 79, 789-802

Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları, Makine Mühendisliği (Diğer)
BölümArticles
Yazarlar

Selahattin Budak GÜMÜŞHANE ÜNİVERSİTESİ, MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 0000-0001-9718-8350 Türkiye

Hamdi Kuleyin RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ, MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 0000-0001-7507-5531 Türkiye

Recep Gümrük KARADENİZ TEKNİK ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ 0000-0002-1447-523X Türkiye

Erken Görünüm Tarihi18 Nisan 2024
Yayımlanma Tarihi30 Haziran 2024
Gönderilme Tarihi8 Aralık 2023
Kabul Tarihi12 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 1

Kaynak Göster

APABudak, S., Kuleyin, H., & Gümrük, R. (2024). Investigation of the compression behavior of ABS/EVA polymer blends. The International Journal of Materials and Engineering Technology, 7(1), 12-17.

Download or read online: Click here