Impact of cooking processes on the toxic metals, macro, and trace elements composition of Rapana venosa meat

Yıl 2024, Cilt: 7 Sayı: 2, 74 – 82, 02.04.2024

https://doi.org/10.3153/AR24007

Öz

Kaynakça

  • Ahmed, K., Mehedi, Y., Haque, R., & Mondol, P. (2011). Heavy metal concentrations in some macrobenthic fauna of the Sundarbans mangrove forest, south west coast of Bangladesh. Environmental Monitoring and Assessment, 177(1-4), 505-514. https://doi.org/10.1007/s10661-010-1651-9
  • Amiard, J.C., Amiard-Triquet, C., Charbonnier, L., Mesnil, A., Rainbow, P.S., & Wang, W.X. (2008). Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food and Chemical Toxicology, 46(6), 2010-2022. https://doi.org/10.1016/j.fct.2008.01.041
  • Atta, M.B., El-Sebaie, L.A., Noaman, M.A., & Kassab, H.E. (1997). The effect of cooking on the content of heavy metals in fish (Tilapia nilotica). Food Chemistry, 58(1-2), 1-4. https://doi.org/10.1016/0308-8146(95)00205-7
  • Bat, L., Gönlügür, G., Andaç, M., Öztürk, M., & Öztürk, M. (2000). Heavy Metal Concentrations in the Sea Snail Rapana venosa (Valeciennes 1846) from Sinop Coasts of the Black Sea. Turkish Journal Marine Sciences, 6, 227-240.
  • Bayrakli, B. (2021). Concentration and potential health risks of trace metals in warty crab (Eriphia verrucosa Forskal, 1775) from Southern Coasts of the Black Sea, Turkey. Environmental Science and Pollution Research, 28(12), 14739-14749. https://doi.org/10.1007/s11356-020-11563-9
  • Burger, J., Dixon, C., Boring, S., & Gochfeld, M. (2003). Effect of Deep-frying fish on risk from mercury. Journal of Toxicology and Environmental Health, Part A, 66(9), 817-828. https://doi.org/10.1080/15287390306382
  • Duyar, H.A., Bayrakli, B., & Altuntas, M. (2023). Effects of floods resulting from climate change on metal concentrations in whiting (Merlangius merlangus euxinus) and red mullet (Mullus barbatus) and health risk assessment. Environmental Monitoring and Assessment, 195(8). https://doi.org/10.1007/s10661-023-11534-w
  • Duyar, H.A., & Bilgin, S. (2020). Heavy metal concentrations in different marine organism obtained. Fresenius Environmental Bulletin, 28(7), 5281-5286.
  • Ersoy, B., Yanar, Y., Küçükgülmez, A., & Çelik, M. (2006). Effects of four cooking methods on the heavy metal concentrations of sea bass fillets (Dicentrarchus labrax Linne, 1785). Food Chemistry, 99(4), 748-751. https://doi.org/10.1016/j.foodchem.2005.08.055
  • Gedik, K. (2018). Bioaccessibility of heavy metals in rapa whelk Rapana venosa (Valenciennes, 1846): Assessing human health risk using an in vitro digestion model. Human and Ecological Risk Assessment: An International Journal, 24(1), 202-213. https://doi.org/10.1080/10807039.2017.1373329
  • Hajeb, P., Sloth, J. J., Shakibazadeh, S., Mahyudin, N. A., & Afsah-Hejri, L. (2014). Toxic elements in food: Occurrence, binding, and reduction approaches. Comprehensive Reviews in Food Science and Food Safety, 13(4), 457-472. https://doi.org/10.1111/1541-4337.12068
  • Hanaoka, K., Yosida, K., Tamano, M., Kuroiwa, T., Kaise, T., & Maeda, S. (2001). Arsenic in the prepared edible brown alga hijiki, Hizikia fusiforme. Applied Organometallic Chemistry, 15(6), 561-565. https://doi.org/10.1002/aoc.195
  • Houlbrèque, F., Hervé-Fernández, P., Teyssié, J.-L., Oberhaënsli, F., Boisson, F., & Jeffree, R. (2011). Cooking makes cadmium contained in Chilean mussels less bioaccessible to humans. Food Chemistry, 126(3), 917-921. https://doi.org/10.1016/j.foodchem.2010.11.078
  • Hwang, D.-W., Choi, M., Lee, I.-S., Shim, K.-B., & Kim, T.-H. (2017). Concentrations of trace metals in tissues of Chionoecetes crabs (Chionoecetes japonicus and Chionoecetes opilio) caught from the East/Japan Sea waters and potential risk assessment. Environmental Science and Pollution Research, 24(12), 11309-11318. https://doi.org/10.1007/s11356-017-8769-z
  • Ichikawa, S., Kamoshida, M., Hanaoka, K., Hamano, M., Maitani, T., & Kaise, T. (2006). Decrease of arsenic in edible brown algae Hijikia fusiforme by the cooking process. Applied Organometallic Chemistry, 20(9), 585-590. https://doi.org/10.1002/aoc.1102
  • Jitar, O., Teodosiu, C., Oros, A., Plavan, G., & Nicoara, M. (2015). Bioaccumulation of heavy metals in marine organisms from the Romanian sector of the Black Sea. New Biotechnology, 32(3), 369-378. https://doi.org/10.1016/j.nbt.2014.11.004
  • Jorhem, L., Engman, J., Sundström, B., & Thim, A.M. (1994). Trace elements in crayfish: Regional differences and changes induced by cooking. Archives of Environmental Contamination and Toxicology, 26(2), 137-142. https://doi.org/10.1007/BF00224796
  • Kapranov, S.V., Karavantseva, N.V., Bobko, N.I., Ryabushko, V.I., & Kapranova, L.L. (2021). Element contents in three commercially important edible mollusks harvested off the southwestern coast of Crimea (Black Sea) and Assessment of Human Health Risks from Their Consumption. Foods, 10(10), 2313. https://doi.org/10.3390/foods10102313
  • Laparra, J.M., Vélez, D., Montoro, R., Barberá, R., & Farré, R. (2003). Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. Journal of Agricultural and Food Chemistry, 51(20), 6080-6085. https://doi.org/10.1021/jf034537i
  • Laparra, J.M., Vélez, D., Montoro, R., Barberá, R., & Farré, R. (2004). Bioaccessibility of inorganic arsenic species in raw and cooked Hizikia fusiforme seaweed. Applied Organometallic Chemistry, 18(12), 662-669. https://doi.org/10.1002/aoc.732
  • Liang, L., He, B., Jiang, G., Chen, D., & Yao, Z. (2004). Evaluation of mollusks as biomonitors to investigate heavy metal contaminations along the Chinese Bohai Sea. Science of The Total Environment, 324(1-3), 105-113. https://doi.org/10.1016/j.scitotenv.2003.10.021
  • Liang, Y., Yi, X., Dang, Z., Wang, Q., Luo, H., & Tang, J. (2017). Heavy Metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. International Journal of Environmental Research and Public Health, 14, 1557. https://doi.org/10.3390/ijerph14121557
  • Liu, Q., Liao, Y., & Shou, L. (2018). Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Marine Pollution Bulletin, 131(36), 356-364. https://doi.org/10.1016/j.marpolbul.2018.04.041
  • Makedonski, L., Peycheva, K., & Stancheva, M. (2017). Determination of heavy metals in selected black sea fish species. Food Control, 72, 313-318. https://doi.org/10.1016/j.foodcont.2015.08.024
  • Maulvault, A.L., Machado, R., Afonso, C., Lourenço, H.M., Nunes, M.L., Coelho, I., Langerholc, T., & Marques, A. (2011). Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab. Food and Chemical Toxicology, 49(11), 2808-2815. https://doi.org/10.1016/j.fct.2011.07.059
  • Mol, S., Kahraman, A.E., & Ulusoy, S. (2019). Potential health risks of heavy metals to the Turkish and greek populations via consumption of spiny dogfish and thornback ray from the sea of marmara. Turkish Journal of Fisheries and Aquatic Sciences, 19(2), 109-117. https://doi.org/10.4194/1303-2712-v19_2_03
  • Mülayim, A., & Balkis, H. (2015). Toxic metal (Pb, Cd, Cr, and Hg) levels in Rapana venosa (Valenciennes, 1846), Eriphia verrucosa (Forskal, 1775), and sediment samples from the Black Sea littoral (Thrace, Turkey). Marine Pollution Bulletin, 95(1), 215–222. https://doi.org/10.1016/j.marpolbul.2015.04.016
  • Ouédraogo, O., & Amyot, M. (2011). Effects of various cooking methods and food components on bioaccessibility of mercury from fish. Environmental Research, 111(8), 1064-1069. https://doi.org/10.1016/j.envres.2011.09.018
  • Panayotova, V., Merzdhanova, A., Dobreva, D., & Stancheva, R. (2019). Blacksea Rapana venosa – A promising source of essential lipids. Journal of IMAB – Annual Proceeding (Scientific Papers), 25(1), 2401-2405. https://doi.org/10.5272/jimab.2019251.2401
  • Perelló, G., Martí-Cid, R., Llobet, J.M., & Domingo, J.L. (2008). Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. Journal of Agricultural and Food Chemistry, 56(23), 11262-11269. https://doi.org/10.1021/jf802411q
  • Peycheva, K., Panayotova, V., & Stancheva, M. (2017). Trace elements concentrations in Black Sea mussel (Mytilus galloprovincialis) and Rapa Whelks (Rapana venosa) from Bulgarian Black Sea coast and evaluation of possible health risks to consumers. Chemistry Research Journal, 2(6), 236-250.
  • Sengupta, M.K., Hossain, M.A., Mukherjee, A., Ahamed, S., Das, B., Nayak, B., Pal, A., & Chakraborti, D. (2006). Arsenic burden of cooked rice: Traditional and modern methods. Food and Chemical Toxicology, 44(11), 1823-1829. https://doi.org/10.1016/j.fct.2006.06.003
  • Stankovic, S., Kalaba, P., & Stankovic, A.R. (2014). Biota as toxic metal indicators. Environmental Chemistry Letters, 12(1), 63-84. https://doi.org/10.1007/s10311-013-0430-6
  • Topçuoğlu, S., Erenffirk, N., Esen, N., Saygi, N., Kut, D., Seddigh, E., & Bassari, A. (1994). Istiridye ve deniz salyangozu örneklerinde toksik element düzeyleri. Ege Üniversitesi Fen Fakültesi Dergisi Series B, 16(1), 239-241. [Topcuoğlu, S., Kırbaşoğlu, Ç., & Güngör, N. (2002). Heavy metals in organisms and sediments from Turkish Coast of the Black Sea, 1997–1998. Environment International, 27(7), 521-526. https://doi.org/10.1016/S0160-4120(01)00099-X
  • Topcuoğlu, S., Kırbaşoğlu, Ç., & Güngör, N. (2002). Heavy metals in organisms and sediments from Turkish Coast of the Black Sea, 1997–1998. Environment International, 27(7), 521-526. https://doi.org/10.1016/S0160-4120(01)00099-X Yildiz, H., Bayrakli, B., Altuntas, M., & Celik, I. (2023). Metal concentrations, selenium-mercury balance, and potential health risk assessment for consumer of whiting (Merlangius merlangus euxinus L., 1758) from different regions of the southern Black Sea. Environmental Science and Pollution Research, 30(24), 65059-65073. https://doi.org/10.1007/s11356-023-26511-6
  • Zhelyazkov, G., Yankovska-Stefanova, T., Mineva, E., Stratev, D., Vashin, I., Dospatliev, L., Valkova, E., & Popova, T. (2018). Risk assessment of some heavy metals in mussels (Mytilus galloprovincialis) and veined rapa whelks (Rapana venosa) for human health. Marine Pollution Bulletin, 128(February), 197-201. https://doi.org/10.1016/j.marpolbul.2018.01.024
  • Zhuang, P., Li, Z., McBride, M.B., Zou, B., & Wang, G. (2013). Health risk assessment for consumption of fish originating from ponds near Dabaoshan mine, South China. Environmental Science and Pollution Research, 20(8), 5844-5854. https://doi.org/10.1007/s11356-013-1606-0

Impact of cooking processes on the toxic metals, macro, and trace elements composition of Rapana venosa meat

Yıl 2024, Cilt: 7 Sayı: 2, 74 – 82, 02.04.2024

https://doi.org/10.3153/AR24007

Öz

This study aimed to investigate the impact of the cooking process on the metal content of Rapana venosa (rapa whelk) meat. The research analysed macro and trace elements and heavy metals to determine how cooking influenced their concentrations in the meat.
The findings revealed significant changes in the composition of macro elements following cooking. Potassium (K) and sodium (Na) concentrations decreased, while magnesium (Mg) and phosphorus (P) concentrations increased. This suggested that cooking facilitated the transfer of these elements from the meat to the cooking water, thereby affecting the nutritional composition of the meat. Similarly, numerous trace elements exhibited alterations during cooking, with elements such as iron (Fe), zinc (Zn), aluminium (Al), copper (Cu), manganese (Mn), selenium (Se), rubidium (Rb), tin (Sn), barium (Ba), chromium (Cr), nickel (Ni), lithium (Li), molybdenum (Mo), and beryllium (Be) decreasing in concentration. In contrast, zinc (Zn) and barium (Ba) increased. The study also addressed heavy metals, where significant changes were observed in the concentrations of arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) following cooking. The results indicated that cooking had the potential to reduce the levels of these toxic heavy metals, although it also highlighted an increase in lead levels that warrants further investigation. In summary, this research provides valuable insights into the changes in the metal content of rapa whelk meat induced by the cooking process. The findings contribute to understanding this seafood’s nutritional aspects and metal composition, offering potential guidance for health recommendations and inspiring future investigations in this field.

Anahtar Kelimeler

Rapana venosa, Toxic metals, Cooking impact, Nutritional changes, Trace elements

Etik Beyan

Ethical approval was not required for this study.

Destekleyen Kurum

Sinop University

Teşekkür

We would like to extend our heartfelt gratitude to Sadiklar Seafood Processing Company for their invaluable support in providing the samples for this study. We also express our appreciation to The Sinop University Scientific and Technological Research Application and Research Center for their contributions in conducting the analysis of the samples. Their assistance played a significant role in the successful completion of this research.

Kaynakça

  • Ahmed, K., Mehedi, Y., Haque, R., & Mondol, P. (2011). Heavy metal concentrations in some macrobenthic fauna of the Sundarbans mangrove forest, south west coast of Bangladesh. Environmental Monitoring and Assessment, 177(1-4), 505-514. https://doi.org/10.1007/s10661-010-1651-9
  • Amiard, J.C., Amiard-Triquet, C., Charbonnier, L., Mesnil, A., Rainbow, P.S., & Wang, W.X. (2008). Bioaccessibility of essential and non-essential metals in commercial shellfish from Western Europe and Asia. Food and Chemical Toxicology, 46(6), 2010-2022. https://doi.org/10.1016/j.fct.2008.01.041
  • Atta, M.B., El-Sebaie, L.A., Noaman, M.A., & Kassab, H.E. (1997). The effect of cooking on the content of heavy metals in fish (Tilapia nilotica). Food Chemistry, 58(1-2), 1-4. https://doi.org/10.1016/0308-8146(95)00205-7
  • Bat, L., Gönlügür, G., Andaç, M., Öztürk, M., & Öztürk, M. (2000). Heavy Metal Concentrations in the Sea Snail Rapana venosa (Valeciennes 1846) from Sinop Coasts of the Black Sea. Turkish Journal Marine Sciences, 6, 227-240.
  • Bayrakli, B. (2021). Concentration and potential health risks of trace metals in warty crab (Eriphia verrucosa Forskal, 1775) from Southern Coasts of the Black Sea, Turkey. Environmental Science and Pollution Research, 28(12), 14739-14749. https://doi.org/10.1007/s11356-020-11563-9
  • Burger, J., Dixon, C., Boring, S., & Gochfeld, M. (2003). Effect of Deep-frying fish on risk from mercury. Journal of Toxicology and Environmental Health, Part A, 66(9), 817-828. https://doi.org/10.1080/15287390306382
  • Duyar, H.A., Bayrakli, B., & Altuntas, M. (2023). Effects of floods resulting from climate change on metal concentrations in whiting (Merlangius merlangus euxinus) and red mullet (Mullus barbatus) and health risk assessment. Environmental Monitoring and Assessment, 195(8). https://doi.org/10.1007/s10661-023-11534-w
  • Duyar, H.A., & Bilgin, S. (2020). Heavy metal concentrations in different marine organism obtained. Fresenius Environmental Bulletin, 28(7), 5281-5286.
  • Ersoy, B., Yanar, Y., Küçükgülmez, A., & Çelik, M. (2006). Effects of four cooking methods on the heavy metal concentrations of sea bass fillets (Dicentrarchus labrax Linne, 1785). Food Chemistry, 99(4), 748-751. https://doi.org/10.1016/j.foodchem.2005.08.055
  • Gedik, K. (2018). Bioaccessibility of heavy metals in rapa whelk Rapana venosa (Valenciennes, 1846): Assessing human health risk using an in vitro digestion model. Human and Ecological Risk Assessment: An International Journal, 24(1), 202-213. https://doi.org/10.1080/10807039.2017.1373329
  • Hajeb, P., Sloth, J. J., Shakibazadeh, S., Mahyudin, N. A., & Afsah-Hejri, L. (2014). Toxic elements in food: Occurrence, binding, and reduction approaches. Comprehensive Reviews in Food Science and Food Safety, 13(4), 457-472. https://doi.org/10.1111/1541-4337.12068
  • Hanaoka, K., Yosida, K., Tamano, M., Kuroiwa, T., Kaise, T., & Maeda, S. (2001). Arsenic in the prepared edible brown alga hijiki, Hizikia fusiforme. Applied Organometallic Chemistry, 15(6), 561-565. https://doi.org/10.1002/aoc.195
  • Houlbrèque, F., Hervé-Fernández, P., Teyssié, J.-L., Oberhaënsli, F., Boisson, F., & Jeffree, R. (2011). Cooking makes cadmium contained in Chilean mussels less bioaccessible to humans. Food Chemistry, 126(3), 917-921. https://doi.org/10.1016/j.foodchem.2010.11.078
  • Hwang, D.-W., Choi, M., Lee, I.-S., Shim, K.-B., & Kim, T.-H. (2017). Concentrations of trace metals in tissues of Chionoecetes crabs (Chionoecetes japonicus and Chionoecetes opilio) caught from the East/Japan Sea waters and potential risk assessment. Environmental Science and Pollution Research, 24(12), 11309-11318. https://doi.org/10.1007/s11356-017-8769-z
  • Ichikawa, S., Kamoshida, M., Hanaoka, K., Hamano, M., Maitani, T., & Kaise, T. (2006). Decrease of arsenic in edible brown algae Hijikia fusiforme by the cooking process. Applied Organometallic Chemistry, 20(9), 585-590. https://doi.org/10.1002/aoc.1102
  • Jitar, O., Teodosiu, C., Oros, A., Plavan, G., & Nicoara, M. (2015). Bioaccumulation of heavy metals in marine organisms from the Romanian sector of the Black Sea. New Biotechnology, 32(3), 369-378. https://doi.org/10.1016/j.nbt.2014.11.004
  • Jorhem, L., Engman, J., Sundström, B., & Thim, A.M. (1994). Trace elements in crayfish: Regional differences and changes induced by cooking. Archives of Environmental Contamination and Toxicology, 26(2), 137-142. https://doi.org/10.1007/BF00224796
  • Kapranov, S.V., Karavantseva, N.V., Bobko, N.I., Ryabushko, V.I., & Kapranova, L.L. (2021). Element contents in three commercially important edible mollusks harvested off the southwestern coast of Crimea (Black Sea) and Assessment of Human Health Risks from Their Consumption. Foods, 10(10), 2313. https://doi.org/10.3390/foods10102313
  • Laparra, J.M., Vélez, D., Montoro, R., Barberá, R., & Farré, R. (2003). Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. Journal of Agricultural and Food Chemistry, 51(20), 6080-6085. https://doi.org/10.1021/jf034537i
  • Laparra, J.M., Vélez, D., Montoro, R., Barberá, R., & Farré, R. (2004). Bioaccessibility of inorganic arsenic species in raw and cooked Hizikia fusiforme seaweed. Applied Organometallic Chemistry, 18(12), 662-669. https://doi.org/10.1002/aoc.732
  • Liang, L., He, B., Jiang, G., Chen, D., & Yao, Z. (2004). Evaluation of mollusks as biomonitors to investigate heavy metal contaminations along the Chinese Bohai Sea. Science of The Total Environment, 324(1-3), 105-113. https://doi.org/10.1016/j.scitotenv.2003.10.021
  • Liang, Y., Yi, X., Dang, Z., Wang, Q., Luo, H., & Tang, J. (2017). Heavy Metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. International Journal of Environmental Research and Public Health, 14, 1557. https://doi.org/10.3390/ijerph14121557
  • Liu, Q., Liao, Y., & Shou, L. (2018). Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. Marine Pollution Bulletin, 131(36), 356-364. https://doi.org/10.1016/j.marpolbul.2018.04.041
  • Makedonski, L., Peycheva, K., & Stancheva, M. (2017). Determination of heavy metals in selected black sea fish species. Food Control, 72, 313-318. https://doi.org/10.1016/j.foodcont.2015.08.024
  • Maulvault, A.L., Machado, R., Afonso, C., Lourenço, H.M., Nunes, M.L., Coelho, I., Langerholc, T., & Marques, A. (2011). Bioaccessibility of Hg, Cd and As in cooked black scabbard fish and edible crab. Food and Chemical Toxicology, 49(11), 2808-2815. https://doi.org/10.1016/j.fct.2011.07.059
  • Mol, S., Kahraman, A.E., & Ulusoy, S. (2019). Potential health risks of heavy metals to the Turkish and greek populations via consumption of spiny dogfish and thornback ray from the sea of marmara. Turkish Journal of Fisheries and Aquatic Sciences, 19(2), 109-117. https://doi.org/10.4194/1303-2712-v19_2_03
  • Mülayim, A., & Balkis, H. (2015). Toxic metal (Pb, Cd, Cr, and Hg) levels in Rapana venosa (Valenciennes, 1846), Eriphia verrucosa (Forskal, 1775), and sediment samples from the Black Sea littoral (Thrace, Turkey). Marine Pollution Bulletin, 95(1), 215–222. https://doi.org/10.1016/j.marpolbul.2015.04.016
  • Ouédraogo, O., & Amyot, M. (2011). Effects of various cooking methods and food components on bioaccessibility of mercury from fish. Environmental Research, 111(8), 1064-1069. https://doi.org/10.1016/j.envres.2011.09.018
  • Panayotova, V., Merzdhanova, A., Dobreva, D., & Stancheva, R. (2019). Blacksea Rapana venosa – A promising source of essential lipids. Journal of IMAB – Annual Proceeding (Scientific Papers), 25(1), 2401-2405. https://doi.org/10.5272/jimab.2019251.2401
  • Perelló, G., Martí-Cid, R., Llobet, J.M., & Domingo, J.L. (2008). Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. Journal of Agricultural and Food Chemistry, 56(23), 11262-11269. https://doi.org/10.1021/jf802411q
  • Peycheva, K., Panayotova, V., & Stancheva, M. (2017). Trace elements concentrations in Black Sea mussel (Mytilus galloprovincialis) and Rapa Whelks (Rapana venosa) from Bulgarian Black Sea coast and evaluation of possible health risks to consumers. Chemistry Research Journal, 2(6), 236-250.
  • Sengupta, M.K., Hossain, M.A., Mukherjee, A., Ahamed, S., Das, B., Nayak, B., Pal, A., & Chakraborti, D. (2006). Arsenic burden of cooked rice: Traditional and modern methods. Food and Chemical Toxicology, 44(11), 1823-1829. https://doi.org/10.1016/j.fct.2006.06.003
  • Stankovic, S., Kalaba, P., & Stankovic, A.R. (2014). Biota as toxic metal indicators. Environmental Chemistry Letters, 12(1), 63-84. https://doi.org/10.1007/s10311-013-0430-6
  • Topçuoğlu, S., Erenffirk, N., Esen, N., Saygi, N., Kut, D., Seddigh, E., & Bassari, A. (1994). Istiridye ve deniz salyangozu örneklerinde toksik element düzeyleri. Ege Üniversitesi Fen Fakültesi Dergisi Series B, 16(1), 239-241. [Topcuoğlu, S., Kırbaşoğlu, Ç., & Güngör, N. (2002). Heavy metals in organisms and sediments from Turkish Coast of the Black Sea, 1997–1998. Environment International, 27(7), 521-526. https://doi.org/10.1016/S0160-4120(01)00099-X
  • Topcuoğlu, S., Kırbaşoğlu, Ç., & Güngör, N. (2002). Heavy metals in organisms and sediments from Turkish Coast of the Black Sea, 1997–1998. Environment International, 27(7), 521-526. https://doi.org/10.1016/S0160-4120(01)00099-X Yildiz, H., Bayrakli, B., Altuntas, M., & Celik, I. (2023). Metal concentrations, selenium-mercury balance, and potential health risk assessment for consumer of whiting (Merlangius merlangus euxinus L., 1758) from different regions of the southern Black Sea. Environmental Science and Pollution Research, 30(24), 65059-65073. https://doi.org/10.1007/s11356-023-26511-6
  • Zhelyazkov, G., Yankovska-Stefanova, T., Mineva, E., Stratev, D., Vashin, I., Dospatliev, L., Valkova, E., & Popova, T. (2018). Risk assessment of some heavy metals in mussels (Mytilus galloprovincialis) and veined rapa whelks (Rapana venosa) for human health. Marine Pollution Bulletin, 128(February), 197-201. https://doi.org/10.1016/j.marpolbul.2018.01.024
  • Zhuang, P., Li, Z., McBride, M.B., Zou, B., & Wang, G. (2013). Health risk assessment for consumption of fish originating from ponds near Dabaoshan mine, South China. Environmental Science and Pollution Research, 20(8), 5844-5854. https://doi.org/10.1007/s11356-013-1606-0

Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Bilimleri (Diğer)
BölümResearch Articles
Yazarlar

Barış Bayraklı SINOP UNIVERSITY, VOCATIONAL SCHOOL 0000-0002-1812-3266 Türkiye

Erken Görünüm Tarihi19 Şubat 2024
Yayımlanma Tarihi2 Nisan 2024
Gönderilme Tarihi11 Eylül 2023
Yayımlandığı Sayı Yıl 2024Cilt: 7 Sayı: 2

Kaynak Göster

APABayraklı, B. (2024). Impact of cooking processes on the toxic metals, macro, and trace elements composition of Rapana venosa meat. Aquatic Research, 7(2), 74-82. https://doi.org/10.3153/AR24007

Download or read online: Click here