HARÇ ATIĞI İKAMELİ MİKRO BETONLARDA SERTLEŞMİŞ HAL VE MİKROYAPI DEĞERLENDİRİLMESİ

Yıl 2024, Cilt: 27 Sayı: 3, 1089 – 1101, 03.09.2024

https://doi.org/10.17780/ksujes.1482487

Öz

Studies on the inclusion of construction debris waste in sustainability and recycling processes have gained momentum, especially after major earthquakes and urban regeneration strategies. In this experimental study, the physical, mechanical, durability and microstructural properties of Micro concrete (MC) designed by substituting varying proportions of Construction Mortar Waste (MW) by volume into CEM-I 42,5R cement were investigated. MW was substituted into the cement at 0%, 5%, 10%, 15%, 20%, 25%, 30% by volume. The amount of binder used in the reference set was 830 kg/m3. The amount of water and Silica Fume (SF) was kept constant in all MC mixtures and used in the design as 400 kg/m3 and 150 kg/m3 respectively. Lime saturated water curing was applied at 20 ± 2 °C for two different periods of 7 and 28 days. In addition, one set of specimens was kept in the laboratory until the 56th and 90th day after 28 days of water curing. On the respective test days, a series of physical, mechanical and durability tests were performed with the hardened specimens. The evaluations microstructural analysis were obtained from X-Ray Diffractometer (XRD) data of 0%, 15% and 30% MW substituted specimens and MW used in the mixture after 28 days of water curing. All data are presented in comparative graphs. As a result, although the mechanical properties improved in the 7 and 28-day specimens in which 10% HA was substituted, strength losses were observed at all substitution rates including this rate and at subsequent ages.

Anahtar Kelimeler

Mortar waste, micro concrete, mechanical properties, physical properties, microstructure

Kaynakça

  • Ajdukiewicz, A., & Kliszczewicz, A. (2002). Influence of recycled aggregates on mechanical properties of HS/HPC. Cement and Concrete Composites, 24(2), 269-279. https://doi.org/10.1016/S0958-9465(01)00012-9
  • Akgül, M., Doğan, O., & Etli, S. (2020). Farklı Çimento ile Üretilen Granül Atık Kauçuk Agregaların İkame Edilmiş Kendiliğinden Yerleşen Beton Harcının Mekanik Özelliklerinin İncelenmesi. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 12(2), 787-798. https://doi.org/10.29137/umagd.734614
  • Akgül, M., & Etli, S. (2023). Effect of Partial Inclusion of Tiles and Brick Waste as Binders in SCM Elements on Fresh State and Early Age Mechanical Properties. 3rd International Conference on Innovative Academic Studies, 699-706.
  • Akgül, M., & Etli, S. (2024). Investigation of the variation of mechanical and durability properties of elements manufactured with rubber substituted SCMs with element height. Construction and Building Materials, 428, 136300. https://doi.org/10.1016/j.conbuildmat.2024.136300
  • ASTM C109/C109M. (2007). Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, 32(10), 2141-2147. https://doi.org/10.1520/C0109
  • ASTM C348-02. (2002). ASTM C348-02 Standard test method for flexural strength of hydraulic cement mortars. 7.
  • ASTM C349-08. (2008). Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). ASTM lnternational, 1-4.
  • ASTM C1585-13. (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes, ASTM International 41. 1-6.
  • Aydın İpekçi, C., Coşkun, N., & Tıkansak Karadayı, T. (2017). İnşaat Sektöründe Geri Kazanılmış Malzeme Kullanımın Sürdürülebilirlik Açısından Önemi. TUBAV, II. Uluslararası Sürdürülebilir Yapılar Sempozyumu ISBS-2015, 10(2), 43-50.
  • Bayrak, İ. C., & Telatar, O. M. (2021). İnşaat Sektörü ve Ekonomik Büyüme İlişkisi: Türkiye Ekonomisi Üzerine Ampirik Bir Analiz. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi (GUSBEED), 12(3).
  • Castellote, M., Alonso, C., Andrade, C., Turrillas, X., & Campo, J. (2004). Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction. Cement and Concrete Research, 34(9), 1633-1644. https://doi.org/10.1016/S0008-8846(03)00229-1
  • Cemalgil, S., & Etli, S. (2019). Polypropylene Fiber Katkılı Kendiliğinden Yerleşen Harçların Mekanik Özelliklerinin İncelenmesi. Munzur 1. Uluslararası Uygulamalı Bilimler Kongresi, 101-110.
  • Cemalgil, S., & Etli, S. (2020). Numune Boyutunun Kauçukla Modifiye Edilmiş Kendiliğinden Yerleşen Betonun Basınç Dayanımı Üzerindeki Etkileri. International Journal of Pure and Applied Sciences, 6(2), 118-129. https://doi.org/10.29132/ijpas.789480
  • Cemalgil, S., Etli, S., & Onat, O. (2018). Curing effect on mortar properties produced with styrene-butadiene rubber. Computers and Concrete, 21(6), 705-715. https://doi.org/10.12989/cac.2018.21.6.705
  • Cemalgil, S., Onat, O., Tanaydın, M. K., & Etli, S. (2021). Effect of waste textile dye adsorbed almond shell on self compacting mortar. Construction and Building Materials, 300, 123978. https://doi.org/10.1016/j.conbuildmat.2021.123978
  • Etli, S. (2022a). Evaluation of curing time for micro concrete mixes containing silica fume, nano-silica and fly ash. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 21(42), 304-316. https://doi.org/10.55071/ticaretfbd.1093891
  • Etli, S. (2022b). Investigation of the Effect of Glass Sand Used in SCC on the Behavior of the SCC Stress- Strain Relationship. International Journal of Innovative Engineering Applications, 6(2), 237-244. https://doi.org/10.46460/ijiea.1108476
  • Etli, S. (2023a). Effect of glass sand used as aggregate on micro-concrete properties. Journal of the Croatian Association of Civil Engineers, 75(01), 39-51. https://doi.org/10.14256/JCE.3538.2022
  • Etli, S. (2023b). Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate. Journal of Cleaner Production, 384, 135590. https://doi.org/10.1016/j.jclepro.2022.135590
  • Etli, S., Cemalgil, S., & Onat, O. (2018a). Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate. International Journal of Pure and Applied Sciences, 4(1), 10-22. https://doi.org/10.29132/ijpas.341413
  • Etli, S., Cemalgil, S., & Onat, O. (2018b). Properties of Self-Compacting Mortars with Different Contents of Synthetic Macro Fiber. 6th International Symposium on Innovative Technologies in Engineering and Science , 593-602.
  • Etli, S., Cemalgil, S., & Onat, O. (2021). Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar. Computers and Concrete, 27(3), 241-252. https://doi.org/10.12989/cac.2021.27.3.241
  • Etli, S., Yılmaz, T., & Hansu, O. (2024). Effect of White-Portland cement containing micro and nano silica on the mechanical and freeze-thaw properties of self compacting mortars. Engineering Science and Technology, an International Journal, 50, 101614. https://doi.org/10.1016/j.jestch.2023.101614
  • Felekoğlu, B. (2007). Effects of PSD and surface morphology of micro-aggregates on admixture requirement and mechanical performance of micro-concrete. Cement and Concrete Composites, 29(6), 481-489. https://doi.org/10.1016/j.cemconcomp.2006.12.008
  • Felekoğlu, B. (2009). Yüksek Performanslı Mikro Beton Tasarımı. Dokuz Eylül Üniversitesi, Doktora Tezi, İzmir.
  • Felekoğlu, B., Tosun, K., & Baradan, B. (2009). Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites. Cement and Concrete Research, 39(11), 1023-1032. https://doi.org/10.1016/j.cemconres.2009.07.007
  • Gao, T., Shen, L., Shen, M., Liu, L., Chen, F., & Gao, L. (2017). Evolution and projection of CO2 emissions for China’s cement industry from 1980 to 2020. Renewable and Sustainable Energy Reviews, 74, 522-537. https://doi.org/10.1016/j.rser.2017.02.006
  • Gesoglu, M., Güneyisi, E., Hansu, O., Etli, S., & Alhassan, M. (2017). Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder. Construction and Building Materials, 140, 562-569. https://doi.org/10.1016/j.conbuildmat.2017.02.139
  • Günel, G., Alakara, E. H., Demir, İ., & Sevim, O. (2024). Geri Dönüştürülmüş Çimento Harç Tozunun Çimento Bağlayıcılı Kompozitler Üzerindeki Etkisi. Politeknik Dergisi, 27(2), 533-543. https://doi.org/10.2339/politeknik.1135957
  • Hafez, H., Kurda, R., Kurda, R., Al-Hadad, B., Mustafa, R., & Ali, B. (2020). A Critical Review on the Influence of Fine Recycled Aggregates on Technical Performance, Environmental Impact and Cost of Concrete. Applied Sciences, 10(3), 1018. https://doi.org/10.3390/app10031018
  • Hansen, T. C. (1986). Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Materials and Structures, 19(3), 201-246. https://doi.org/10.1007/BF02472036
  • Hansu, O., & Etli, S. (2022). Beton ile Üretilen Suda Yüzebilen Kano Tasarımı Üzerine Bir Araştırma. European Journal of Science and Technology, (35), 330-334. https://doi.org/10.31590/ejosat.1052105
  • He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y. (2019). Comparison of CO2 emissions from OPC and recycled cement production. Construction and Building Materials, 211, 965-973. https://doi.org/10.1016/j.conbuildmat.2019.03.289
  • Houst, Y. F., Bowen, P., & Siebold, A. (2002). Some basic aspects of the interaction between cement and superplasticizers. Innovations and Developments in Concrete Materials and Construction, 12, 225-234.
  • Joseph, H. S., Pachiappan, T., Avudaiappan, S., Maureira-Carsalade, N., Roco-Videla, Á., Guindos, P., & Parra, P. F. (2023). A Comprehensive Review on Recycling of Construction Demolition Waste in Concrete. Sustainability, 15(6), 4932. https://doi.org/10.3390/su15064932
  • Kim, Y.-J. (2017). Quality properties of self-consolidating concrete mixed with waste concrete powder. Construction and Building Materials, 135, 177-185. https://doi.org/10.1016/j.conbuildmat.2016.12.174
  • Korkmaz, A. V. (2019). Portland Çimento Üretiminde ve Kullanımında İş Güvenliği Risklerinin ve Sağlık Önlemlerinin Değerlendirilmesi. MT Bilimsel(15), 21-30.
  • Kwon, E., Ahn, J., Cho, B., & Park, D. (2015). A study on development of recycled cement made from waste cementitious powder. Construction and Building Materials, 83, 174-180. https://doi.org/10.1016/j.conbuildmat.2015.02.086
  • Lidmila, M., Tesárek, P., Plachy, T., Rácová, Z., Padevět, P., Nežerka, V., & Zobal, O. (2013). Utilization of Recycled Fine-Ground Concrete from Railway Sleepers for Production of Cement-Based Binder. Applied Mechanics and Materials, 486, 323-326. https://doi.org/10.4028/www.scientific.net/AMM.486.323
  • Moon, D.-J., Moon, H.-Y., & Kim, Y.-B. (2005). Fundamental Properties of Mortar Containing Waste Concrete Powder. Geosystem Engineering, 8(4), 95-100. https://doi.org/10.1080/12269328.2005.10541243
  • Omrane, M., Kenai, S., Kadri, E.-H., & Aït-Mokhtar, A. (2017). Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. Journal of Cleaner Production, 165, 415-430. https://doi.org/10.1016/j.jclepro.2017.07.139
  • Özay, P., Karagülle, M., Kardeş, S., & Karagülle, M. Z. (2020). Chemical and mineralogical characteristics of peloids in Turkey. Environmental Monitoring and Assessment, 192(12), 805. https://doi.org/10.1007/s10661-020-08777-2
  • Shui, Z., Xuan, D., Chen, W., Yu, R., & Zhang, R. (2009). Cementitious characteristics of hydrated cement paste subjected to various dehydration temperatures. Construction and Building Materials, 23(1), 531-537. https://doi.org/10.1016/j.conbuildmat.2007.10.016
  • Thomas, C., Tamayo, P., Setién, J., Ferreño, D., Polanco, J. A., & Rico, J. (2021). Effect of high temperature and accelerated aging in high density micro-concrete. Construction and Building Materials, 272, 121920. https://doi.org/10.1016/j.conbuildmat.2020.121920
  • TS EN 197-1. (2011). Çimento- Bölüm 1: Genel çimentolar- Bileşim, özellikler ve uygunluk kriterleri. Türk Standartları Enstitüsü, Ankara.
  • TS EN 933-1. (2012). Agregaların geometrik özellikleri için deneyler – Bölüm 1: Tane büyüklüğü dağılımının tayini – Eleme yöntemi. Ankara.
  • TS EN 934-2+A1. (2014). Kimyasal katkılar – Beton, harç ve şerbet için – Bölüm 2: Beton kimyasal katkıları – Tarifler, gerekler, uygunluk, işaretleme ve etiketleme. Türk Standartları Enstitüsü, Ankara.
  • TS EN 1008. (2003). Beton-Karma suyu-Numune alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları.
  • Tu, T. Y., Chen, Y. Y., & Hwang, C. L. (2006). Properties of HPC with recycled aggregates. Cement and Concrete Research, 36(5), 943-950. https://doi.org/10.1016/j.cemconres.2005.11.022
  • Victor, C. L., & Tetsushi, K. (1998). Engineered Cementitious Composites for Structural Applications. Innovations Forum in ASCE J. Materials in Civil Engineering, 10(2).
  • Yu, R., & Shui, Z. (2014). Efficient reuse of the recycled construction waste cementitious materials. Journal of Cleaner Production, 78, 202-207. https://doi.org/10.1016/j.jclepro.2014.05.003

HARÇ ATIĞI İKAMELİ MİKRO BETONLARDA SERTLEŞMİŞ HAL VE MİKROYAPI DEĞERLENDİRİLMESİ

Yıl 2024, Cilt: 27 Sayı: 3, 1089 – 1101, 03.09.2024

https://doi.org/10.17780/ksujes.1482487

Öz

İnşaat yıkıntı atığının sürdürülebilirlik ve geri dönüşüm süreçlerine dahil edilme çalışmaları özellikle yıkım gücü büyük depremler ve kentsel dönüşüm stratejileri sonrası hız kazanmıştır. Bu deneysel çalışmada, İnşaat Harç Atığı (HA)’nın CEM-I 42,5R çimentoya hacimce değişken oranlarda ikame edilmesi ile tasarlanan Mikro Beton (MB)’ların fiziksel, mekanik, durabilite ve mikroyapı özellikleri incelenmiştir. HA çimentoya hacimce %0, %5, 10, 15, 20, 25, 30 oranlarında ikame edilmiştir. Referans setinde kullanılan bağlayıcı miktarı 830 kg/m3’tür. Tüm MB karışımlarında su ve Silis Dumanı (SD) miktarı sabittir ve sırasıyla 400 kg/m3 ve 150 kg/m3 olarak tasarımda kullanılmıştır. 20 ± 2 °C sıcaklıkta kirece doygun su kürü 7 ve 28 gün olmak üzere iki farklı periyotta uygulanmıştır. Ayrıca birer takım numune 28 gün su kürü sonrası 56. ve 90. güne kadar laboratuvar ortamında bekletilmiştir. İlgili deney günlerinde sertleşmiş numuneler ile bir dizi fiziksel, mekanik ve durabilite deneyleri gerçekleştirilmiştir. Mikroyapı analizi değerlendirmeleri 28 günlük su kürü sonrası %0, %15 ve %30 HA ikameli numuneler ve karışımda kullanılan HA’nın X-ışını Difraktometresi (XRD) verilerden sağlanmıştır. Tüm veriler karşılaştırmalı grafikler ile sunulmuştur. Sonuç olarak, %10 HA’nın ikame edildiği 7 ve 28 günlük numunelerde mekanik özellikleri iyileşmesine rağmen, bu oran dahil tüm ikame oranlarında ve sonraki yaşlarda mukavemet kayıpları gözlenmiştir.

Anahtar Kelimeler

Harç atığı, mikro beton, mekanik özellikler, fiziksel özellikler, mikroyapı

Kaynakça

  • Ajdukiewicz, A., & Kliszczewicz, A. (2002). Influence of recycled aggregates on mechanical properties of HS/HPC. Cement and Concrete Composites, 24(2), 269-279. https://doi.org/10.1016/S0958-9465(01)00012-9
  • Akgül, M., Doğan, O., & Etli, S. (2020). Farklı Çimento ile Üretilen Granül Atık Kauçuk Agregaların İkame Edilmiş Kendiliğinden Yerleşen Beton Harcının Mekanik Özelliklerinin İncelenmesi. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 12(2), 787-798. https://doi.org/10.29137/umagd.734614
  • Akgül, M., & Etli, S. (2023). Effect of Partial Inclusion of Tiles and Brick Waste as Binders in SCM Elements on Fresh State and Early Age Mechanical Properties. 3rd International Conference on Innovative Academic Studies, 699-706.
  • Akgül, M., & Etli, S. (2024). Investigation of the variation of mechanical and durability properties of elements manufactured with rubber substituted SCMs with element height. Construction and Building Materials, 428, 136300. https://doi.org/10.1016/j.conbuildmat.2024.136300
  • ASTM C109/C109M. (2007). Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, 32(10), 2141-2147. https://doi.org/10.1520/C0109
  • ASTM C348-02. (2002). ASTM C348-02 Standard test method for flexural strength of hydraulic cement mortars. 7.
  • ASTM C349-08. (2008). Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). ASTM lnternational, 1-4.
  • ASTM C1585-13. (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes, ASTM International 41. 1-6.
  • Aydın İpekçi, C., Coşkun, N., & Tıkansak Karadayı, T. (2017). İnşaat Sektöründe Geri Kazanılmış Malzeme Kullanımın Sürdürülebilirlik Açısından Önemi. TUBAV, II. Uluslararası Sürdürülebilir Yapılar Sempozyumu ISBS-2015, 10(2), 43-50.
  • Bayrak, İ. C., & Telatar, O. M. (2021). İnşaat Sektörü ve Ekonomik Büyüme İlişkisi: Türkiye Ekonomisi Üzerine Ampirik Bir Analiz. Gümüşhane Üniversitesi Sosyal Bilimler Dergisi (GUSBEED), 12(3).
  • Castellote, M., Alonso, C., Andrade, C., Turrillas, X., & Campo, J. (2004). Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction. Cement and Concrete Research, 34(9), 1633-1644. https://doi.org/10.1016/S0008-8846(03)00229-1
  • Cemalgil, S., & Etli, S. (2019). Polypropylene Fiber Katkılı Kendiliğinden Yerleşen Harçların Mekanik Özelliklerinin İncelenmesi. Munzur 1. Uluslararası Uygulamalı Bilimler Kongresi, 101-110.
  • Cemalgil, S., & Etli, S. (2020). Numune Boyutunun Kauçukla Modifiye Edilmiş Kendiliğinden Yerleşen Betonun Basınç Dayanımı Üzerindeki Etkileri. International Journal of Pure and Applied Sciences, 6(2), 118-129. https://doi.org/10.29132/ijpas.789480
  • Cemalgil, S., Etli, S., & Onat, O. (2018). Curing effect on mortar properties produced with styrene-butadiene rubber. Computers and Concrete, 21(6), 705-715. https://doi.org/10.12989/cac.2018.21.6.705
  • Cemalgil, S., Onat, O., Tanaydın, M. K., & Etli, S. (2021). Effect of waste textile dye adsorbed almond shell on self compacting mortar. Construction and Building Materials, 300, 123978. https://doi.org/10.1016/j.conbuildmat.2021.123978
  • Etli, S. (2022a). Evaluation of curing time for micro concrete mixes containing silica fume, nano-silica and fly ash. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 21(42), 304-316. https://doi.org/10.55071/ticaretfbd.1093891
  • Etli, S. (2022b). Investigation of the Effect of Glass Sand Used in SCC on the Behavior of the SCC Stress- Strain Relationship. International Journal of Innovative Engineering Applications, 6(2), 237-244. https://doi.org/10.46460/ijiea.1108476
  • Etli, S. (2023a). Effect of glass sand used as aggregate on micro-concrete properties. Journal of the Croatian Association of Civil Engineers, 75(01), 39-51. https://doi.org/10.14256/JCE.3538.2022
  • Etli, S. (2023b). Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate. Journal of Cleaner Production, 384, 135590. https://doi.org/10.1016/j.jclepro.2022.135590
  • Etli, S., Cemalgil, S., & Onat, O. (2018a). Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate. International Journal of Pure and Applied Sciences, 4(1), 10-22. https://doi.org/10.29132/ijpas.341413
  • Etli, S., Cemalgil, S., & Onat, O. (2018b). Properties of Self-Compacting Mortars with Different Contents of Synthetic Macro Fiber. 6th International Symposium on Innovative Technologies in Engineering and Science , 593-602.
  • Etli, S., Cemalgil, S., & Onat, O. (2021). Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar. Computers and Concrete, 27(3), 241-252. https://doi.org/10.12989/cac.2021.27.3.241
  • Etli, S., Yılmaz, T., & Hansu, O. (2024). Effect of White-Portland cement containing micro and nano silica on the mechanical and freeze-thaw properties of self compacting mortars. Engineering Science and Technology, an International Journal, 50, 101614. https://doi.org/10.1016/j.jestch.2023.101614
  • Felekoğlu, B. (2007). Effects of PSD and surface morphology of micro-aggregates on admixture requirement and mechanical performance of micro-concrete. Cement and Concrete Composites, 29(6), 481-489. https://doi.org/10.1016/j.cemconcomp.2006.12.008
  • Felekoğlu, B. (2009). Yüksek Performanslı Mikro Beton Tasarımı. Dokuz Eylül Üniversitesi, Doktora Tezi, İzmir.
  • Felekoğlu, B., Tosun, K., & Baradan, B. (2009). Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites. Cement and Concrete Research, 39(11), 1023-1032. https://doi.org/10.1016/j.cemconres.2009.07.007
  • Gao, T., Shen, L., Shen, M., Liu, L., Chen, F., & Gao, L. (2017). Evolution and projection of CO2 emissions for China’s cement industry from 1980 to 2020. Renewable and Sustainable Energy Reviews, 74, 522-537. https://doi.org/10.1016/j.rser.2017.02.006
  • Gesoglu, M., Güneyisi, E., Hansu, O., Etli, S., & Alhassan, M. (2017). Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder. Construction and Building Materials, 140, 562-569. https://doi.org/10.1016/j.conbuildmat.2017.02.139
  • Günel, G., Alakara, E. H., Demir, İ., & Sevim, O. (2024). Geri Dönüştürülmüş Çimento Harç Tozunun Çimento Bağlayıcılı Kompozitler Üzerindeki Etkisi. Politeknik Dergisi, 27(2), 533-543. https://doi.org/10.2339/politeknik.1135957
  • Hafez, H., Kurda, R., Kurda, R., Al-Hadad, B., Mustafa, R., & Ali, B. (2020). A Critical Review on the Influence of Fine Recycled Aggregates on Technical Performance, Environmental Impact and Cost of Concrete. Applied Sciences, 10(3), 1018. https://doi.org/10.3390/app10031018
  • Hansen, T. C. (1986). Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Materials and Structures, 19(3), 201-246. https://doi.org/10.1007/BF02472036
  • Hansu, O., & Etli, S. (2022). Beton ile Üretilen Suda Yüzebilen Kano Tasarımı Üzerine Bir Araştırma. European Journal of Science and Technology, (35), 330-334. https://doi.org/10.31590/ejosat.1052105
  • He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y. (2019). Comparison of CO2 emissions from OPC and recycled cement production. Construction and Building Materials, 211, 965-973. https://doi.org/10.1016/j.conbuildmat.2019.03.289
  • Houst, Y. F., Bowen, P., & Siebold, A. (2002). Some basic aspects of the interaction between cement and superplasticizers. Innovations and Developments in Concrete Materials and Construction, 12, 225-234.
  • Joseph, H. S., Pachiappan, T., Avudaiappan, S., Maureira-Carsalade, N., Roco-Videla, Á., Guindos, P., & Parra, P. F. (2023). A Comprehensive Review on Recycling of Construction Demolition Waste in Concrete. Sustainability, 15(6), 4932. https://doi.org/10.3390/su15064932
  • Kim, Y.-J. (2017). Quality properties of self-consolidating concrete mixed with waste concrete powder. Construction and Building Materials, 135, 177-185. https://doi.org/10.1016/j.conbuildmat.2016.12.174
  • Korkmaz, A. V. (2019). Portland Çimento Üretiminde ve Kullanımında İş Güvenliği Risklerinin ve Sağlık Önlemlerinin Değerlendirilmesi. MT Bilimsel(15), 21-30.
  • Kwon, E., Ahn, J., Cho, B., & Park, D. (2015). A study on development of recycled cement made from waste cementitious powder. Construction and Building Materials, 83, 174-180. https://doi.org/10.1016/j.conbuildmat.2015.02.086
  • Lidmila, M., Tesárek, P., Plachy, T., Rácová, Z., Padevět, P., Nežerka, V., & Zobal, O. (2013). Utilization of Recycled Fine-Ground Concrete from Railway Sleepers for Production of Cement-Based Binder. Applied Mechanics and Materials, 486, 323-326. https://doi.org/10.4028/www.scientific.net/AMM.486.323
  • Moon, D.-J., Moon, H.-Y., & Kim, Y.-B. (2005). Fundamental Properties of Mortar Containing Waste Concrete Powder. Geosystem Engineering, 8(4), 95-100. https://doi.org/10.1080/12269328.2005.10541243
  • Omrane, M., Kenai, S., Kadri, E.-H., & Aït-Mokhtar, A. (2017). Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. Journal of Cleaner Production, 165, 415-430. https://doi.org/10.1016/j.jclepro.2017.07.139
  • Özay, P., Karagülle, M., Kardeş, S., & Karagülle, M. Z. (2020). Chemical and mineralogical characteristics of peloids in Turkey. Environmental Monitoring and Assessment, 192(12), 805. https://doi.org/10.1007/s10661-020-08777-2
  • Shui, Z., Xuan, D., Chen, W., Yu, R., & Zhang, R. (2009). Cementitious characteristics of hydrated cement paste subjected to various dehydration temperatures. Construction and Building Materials, 23(1), 531-537. https://doi.org/10.1016/j.conbuildmat.2007.10.016
  • Thomas, C., Tamayo, P., Setién, J., Ferreño, D., Polanco, J. A., & Rico, J. (2021). Effect of high temperature and accelerated aging in high density micro-concrete. Construction and Building Materials, 272, 121920. https://doi.org/10.1016/j.conbuildmat.2020.121920
  • TS EN 197-1. (2011). Çimento- Bölüm 1: Genel çimentolar- Bileşim, özellikler ve uygunluk kriterleri. Türk Standartları Enstitüsü, Ankara.
  • TS EN 933-1. (2012). Agregaların geometrik özellikleri için deneyler – Bölüm 1: Tane büyüklüğü dağılımının tayini – Eleme yöntemi. Ankara.
  • TS EN 934-2+A1. (2014). Kimyasal katkılar – Beton, harç ve şerbet için – Bölüm 2: Beton kimyasal katkıları – Tarifler, gerekler, uygunluk, işaretleme ve etiketleme. Türk Standartları Enstitüsü, Ankara.
  • TS EN 1008. (2003). Beton-Karma suyu-Numune alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları.
  • Tu, T. Y., Chen, Y. Y., & Hwang, C. L. (2006). Properties of HPC with recycled aggregates. Cement and Concrete Research, 36(5), 943-950. https://doi.org/10.1016/j.cemconres.2005.11.022
  • Victor, C. L., & Tetsushi, K. (1998). Engineered Cementitious Composites for Structural Applications. Innovations Forum in ASCE J. Materials in Civil Engineering, 10(2).
  • Yu, R., & Shui, Z. (2014). Efficient reuse of the recycled construction waste cementitious materials. Journal of Cleaner Production, 78, 202-207. https://doi.org/10.1016/j.jclepro.2014.05.003

Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Yapım Mühendisliği
Bölümİnşaat Mühendisliği
Yazarlar

Melek Akgül MUNZUR ÜNİVERSİTESİ 0000-0001-8815-3762 Türkiye

Osman Hansu GAZİANTEP ÜNİVERSİTESİ 0000-0003-1638-4304 Türkiye

Yayımlanma Tarihi3 Eylül 2024
Gönderilme Tarihi11 Mayıs 2024
Kabul Tarihi15 Haziran 2024
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 3

Kaynak Göster

APAAkgül, M., & Hansu, O. (2024). HARÇ ATIĞI İKAMELİ MİKRO BETONLARDA SERTLEŞMİŞ HAL VE MİKROYAPI DEĞERLENDİRİLMESİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 1089-1101. https://doi.org/10.17780/ksujes.1482487

Download or read online: Click here