Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces

Yıl 2024, Cilt: 7 Sayı: 2, 76 – 82, 23.05.2024

https://doi.org/10.32323/ujma.1424201 Cited By: 1

Öz

Kaynakça

  • [1] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • [2] H. Fast, Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241-244.
  • [3] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150.
  • [4] J. A. Fridy, On statistical convergence, Analysis, 5(4) (1985), 301-314.
  • [5] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis, 8(1-2) (1988), 47-64.
  • [6] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesàro-type summability spaces, Proc. Lond. Math. Soc., 3(3) (1978), 508-520.
  • [7] G. Das, B. K. Patel, Lacunary distribution of sequences, Indian J. Pure Appl. Math., 20(1) (1989), 64-74.
  • [8] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific. J. Math., 160 (1993), 43-51.
  • [9] J. A. Fridy, C. Orhan Lacunary statistical summability, J. Math. Anal. Appl., 173(2) (1993), 497-504.
  • [10] U. Ulusu, F. Nuray, Lacunary statistical convergence of sequences of sets, Progr. Appl. Math., 4(2) (2012), 99-109.
  • [11] U. Ulusu, F. Nuray, Statistical lacunary summability of sequences of sets, AKU J. Sci. Eng., 13 (2013), 9-14.
  • [12] U. Ulusu, F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Bioinform., 3(3) (2013), 75-88.
  • [13] S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932.
  • [14] G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
  • [15] D. Dean, R. A. Raimi, Permutations with comparable sets of invariant means, Duke Math. J., 27 (1960), 467-479.
  • [16] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30 (1963), 81-94.
  • [17] M. Mursaleen, O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett., 22(11) (2009), 1700-1704.
  • [18] M. Mursaleen, On some new invariant matrix methods of summability, Q. J. Math., 34(1) (1983), 77-86.
  • [19] E. Savaş, Some sequence spaces involving invariant means, Indian J. Math., 31 (1989), 1-8.
  • [20] E. Savaş, Strong s-convergent sequences, Bull. Calcutta Math., 81 (1989), 295-300.
  • [21] P. Schaefer, Infinite matrices and invariant means, Proc. Mer. Math. Soc., 36 (1972), 104-110.
  • [22] E. Savaş, On lacunary strong s􀀀convergence, Indian J. Pure Appl. Math., 21 (1990), 359-365.
  • [23] E. Savaş, F. Nuray, On s-statistically convergence and lacunary s-statistically convergence, Math. Slovaca, 43(3) (1993), 309-315.
  • [24] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.
  • [25] D. Dubois, H. Prade, Operations on fuzzy numbers, Internat. J. Systems Sci., 9(6) (1978), 613-626.
  • [26] D. Dubois, H. Prade, Fuzzy real algebra: some results, Fuzzy Sets and Systems, 2(4) (1979), 327-348.
  • [27] C. L. Chang, Fuzzy topolojical spaces, J. Math. Anal. Appl., 24(1) (1968), 182-190.
  • [28] C. K. Wong, Covering properties of fuzzy topological spaces. J. Math. Anal. Appl., 43(3) (1973), 697-704.
  • [29] C. K. Wong, Fuzzy topology: product and quotient theorems. J. Math. Anal. Appl., 45(2) (1974), 512-521.
  • [30] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Sytems, 12(3) (1984), 215-229.
  • [31] I. Kramosil, J. Michálek, Fuzzy metrics and statstical metric spaces, Kybernetika, 11(5) (1975), 336-344.
  • [32] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48(2) (1992), 293-248.
  • [33] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12(2) (1984), 143-154.
  • [34] C. Şençimen, S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy Sets and Systems, 159 (2008), 361-370.
  • [35] M. R. Türkmen, M. Çınar, Lacunary statistical convergence in fuzzy normed linear spaces, Appl. Comput. Math., 6(5) (2017), 233-237.
  • [36] M. R. Türkmen, M. Çınar, l-statistical convergence in fuzzy normed linear spaces, J. Intell. Fuzzy Syst., 34(6) (2018), 4023-4030.
  • [37] M. R. Türkmen, E. Dündar, On lacunary statistical convergence of double sequences and some properties in fuzzy normed spaces, J. Intell. Fuzzy Syst., 36(2) (2019), 1683-1690.
  • [38] Ş. Yalvaç, E. Dündar, Invariant convergence in fuzzy normed spaces, Honam Math. J., 43(3) (2021), 433-440.
  • [39] Ş Yalvaç, E. Dündar, Lacunary strongly invariant convergence in fuzzy normed spaces, Math. Sci. Appl. E-Notes, 11(2) (2023), 89-96

Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces

Yıl 2024, Cilt: 7 Sayı: 2, 76 – 82, 23.05.2024

https://doi.org/10.32323/ujma.1424201 Cited By: 1

Öz

In the study done here regarding the theory of summability, we introduce some new concepts in fuzzy normed spaces. First, at the beginning of the original part of our study, we define the lacunary invariant statistical convergence. Then, we examine some characteristic features like uniqueness, linearity of this new notion and give its important relation with pre-given concepts.

Anahtar Kelimeler

Fuzzy normed spaces, Invariant convergence, Lacunary convergence, Statistical convergence

Kaynakça

  • [1] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361-375.
  • [2] H. Fast, Sur la convergence statistique, Colloq. Math., 2(3-4) (1951), 241-244.
  • [3] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca, 30(2) (1980), 139-150.
  • [4] J. A. Fridy, On statistical convergence, Analysis, 5(4) (1985), 301-314.
  • [5] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis, 8(1-2) (1988), 47-64.
  • [6] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesàro-type summability spaces, Proc. Lond. Math. Soc., 3(3) (1978), 508-520.
  • [7] G. Das, B. K. Patel, Lacunary distribution of sequences, Indian J. Pure Appl. Math., 20(1) (1989), 64-74.
  • [8] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific. J. Math., 160 (1993), 43-51.
  • [9] J. A. Fridy, C. Orhan Lacunary statistical summability, J. Math. Anal. Appl., 173(2) (1993), 497-504.
  • [10] U. Ulusu, F. Nuray, Lacunary statistical convergence of sequences of sets, Progr. Appl. Math., 4(2) (2012), 99-109.
  • [11] U. Ulusu, F. Nuray, Statistical lacunary summability of sequences of sets, AKU J. Sci. Eng., 13 (2013), 9-14.
  • [12] U. Ulusu, F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Bioinform., 3(3) (2013), 75-88.
  • [13] S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932.
  • [14] G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
  • [15] D. Dean, R. A. Raimi, Permutations with comparable sets of invariant means, Duke Math. J., 27 (1960), 467-479.
  • [16] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30 (1963), 81-94.
  • [17] M. Mursaleen, O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett., 22(11) (2009), 1700-1704.
  • [18] M. Mursaleen, On some new invariant matrix methods of summability, Q. J. Math., 34(1) (1983), 77-86.
  • [19] E. Savaş, Some sequence spaces involving invariant means, Indian J. Math., 31 (1989), 1-8.
  • [20] E. Savaş, Strong s-convergent sequences, Bull. Calcutta Math., 81 (1989), 295-300.
  • [21] P. Schaefer, Infinite matrices and invariant means, Proc. Mer. Math. Soc., 36 (1972), 104-110.
  • [22] E. Savaş, On lacunary strong s􀀀convergence, Indian J. Pure Appl. Math., 21 (1990), 359-365.
  • [23] E. Savaş, F. Nuray, On s-statistically convergence and lacunary s-statistically convergence, Math. Slovaca, 43(3) (1993), 309-315.
  • [24] L. A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338-353.
  • [25] D. Dubois, H. Prade, Operations on fuzzy numbers, Internat. J. Systems Sci., 9(6) (1978), 613-626.
  • [26] D. Dubois, H. Prade, Fuzzy real algebra: some results, Fuzzy Sets and Systems, 2(4) (1979), 327-348.
  • [27] C. L. Chang, Fuzzy topolojical spaces, J. Math. Anal. Appl., 24(1) (1968), 182-190.
  • [28] C. K. Wong, Covering properties of fuzzy topological spaces. J. Math. Anal. Appl., 43(3) (1973), 697-704.
  • [29] C. K. Wong, Fuzzy topology: product and quotient theorems. J. Math. Anal. Appl., 45(2) (1974), 512-521.
  • [30] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Sytems, 12(3) (1984), 215-229.
  • [31] I. Kramosil, J. Michálek, Fuzzy metrics and statstical metric spaces, Kybernetika, 11(5) (1975), 336-344.
  • [32] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48(2) (1992), 293-248.
  • [33] A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12(2) (1984), 143-154.
  • [34] C. Şençimen, S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy Sets and Systems, 159 (2008), 361-370.
  • [35] M. R. Türkmen, M. Çınar, Lacunary statistical convergence in fuzzy normed linear spaces, Appl. Comput. Math., 6(5) (2017), 233-237.
  • [36] M. R. Türkmen, M. Çınar, l-statistical convergence in fuzzy normed linear spaces, J. Intell. Fuzzy Syst., 34(6) (2018), 4023-4030.
  • [37] M. R. Türkmen, E. Dündar, On lacunary statistical convergence of double sequences and some properties in fuzzy normed spaces, J. Intell. Fuzzy Syst., 36(2) (2019), 1683-1690.
  • [38] Ş. Yalvaç, E. Dündar, Invariant convergence in fuzzy normed spaces, Honam Math. J., 43(3) (2021), 433-440.
  • [39] Ş Yalvaç, E. Dündar, Lacunary strongly invariant convergence in fuzzy normed spaces, Math. Sci. Appl. E-Notes, 11(2) (2023), 89-96

Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
BölümMakaleler
Yazarlar

Şeyma Yalvaç AFYON KOCATEPE ÜNİVERSİTESİ 0000-0003-2516-4485 Türkiye

Erken Görünüm Tarihi1 Nisan 2024
Yayımlanma Tarihi23 Mayıs 2024
Gönderilme Tarihi23 Ocak 2024
Kabul Tarihi20 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APAYalvaç, Ş. (2024). Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces. Universal Journal of Mathematics and Applications, 7(2), 76-82. https://doi.org/10.32323/ujma.1424201
AMAYalvaç Ş. Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces. Univ. J. Math. Appl. Mayıs 2024;7(2):76-82. doi:10.32323/ujma.1424201
ChicagoYalvaç, Şeyma. “Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces”. Universal Journal of Mathematics and Applications 7, sy. 2 (Mayıs 2024): 76-82. https://doi.org/10.32323/ujma.1424201.
EndNoteYalvaç Ş (01 Mayıs 2024) Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces. Universal Journal of Mathematics and Applications 7 2 76–82.
IEEEŞ. Yalvaç, “Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces”, Univ. J. Math. Appl., c. 7, sy. 2, ss. 76–82, 2024, doi: 10.32323/ujma.1424201.
ISNADYalvaç, Şeyma. “Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces”. Universal Journal of Mathematics and Applications 7/2 (Mayıs 2024), 76-82. https://doi.org/10.32323/ujma.1424201.
JAMAYalvaç Ş. Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces. Univ. J. Math. Appl. 2024;7:76–82.
MLAYalvaç, Şeyma. “Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces”. Universal Journal of Mathematics and Applications, c. 7, sy. 2, 2024, ss. 76-82, doi:10.32323/ujma.1424201.
VancouverYalvaç Ş. Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces. Univ. J. Math. Appl. 2024;7(2):76-82.

Cited By

Lacunary Invariant Statistical Convergence in Fuzzy Normed Spaces

Universal Journal of Mathematics and Applications https://doi.org/10.32323/ujma.1424201

Download or read online: Click here