On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent

Yıl 2024, Cilt: 7 Sayı: 2, 93 – 101, 23.05.2024

https://doi.org/10.32323/ujma.1409291

Öz

This paper aims to investigate the existence, uniqueness, and stability properties for a class of fractional weighted Cauchy-type problem in the variable exponent Lebesgue space $L^{p(.)}$. The obtained results are set up by employing generalized intervals and piece-wise constant functions so that the $L^{p(.)}$ is transformed into the classical Lebesgue spaces.
Moreover, the usual Banach Contraction Principle is utilized, and the Ulam-Hyers (UH) stability is studied. At the final stage, we provide an example to support the accuracy of the obtained results.

Anahtar Kelimeler

Fixed point theorem, Fractional differential equations, Ulam-Hyers stability, Variable exponent Lebesgue spaces

Kaynakça

  • [1] W. Orlicz, Über konjugierte exponentenfolgen, Studia Mathematica, 3(1) (1931), 200-211.
  • [2] H Nakano, Modular Semi-Ordered Spaces, Maruzen Co. Ltd., Tokyo, Japan, 1950.
  • [3] H. Nakano, Topology and Topological Linear Spaces, Maruzen Co., Ltd., Tokyo, 1951.
  • [4] I. I. Sharapudinov, Topology of the space Lp(t)(0;1), Matematicheskie Zametki, 26(4) (1979), 613-632.
  • [5] O. Kovavcik, J. Rakosnik, On spaces l p(x) and wk;p(x), Czechoslovak Math. J., 41(116) (1991), 592-618.
  • [6] X.L. Fan, D. Zhao, On the spaces l p(x)(w) and wk;p(x)(w), J. Math. Anal. Appl., 263(2) (2001), 424-446.
  • [7] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56(4) (2008), 874-882.
  • [8] H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, MOS-SIAM series on optimization, 2014.
  • [9] E. M. Bollt, R. Chartrand, S. Esedoğlu, P. Schultz, K. R. Vixie, Graduated adaptive image denoising: Local compromise between total variation and isotropic diffusion, Adv. Comput. Math., 31 (2009), 61-85.
  • [10] Y. Chen, W. Guo, Q. Zeng, Y. Liu, A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images, Inverse Probl. Imaging, 2(2) (2008), 205-224.
  • [11] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(4) (2006), 1383-1406.
  • [12] C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with y-caputo derivative via monotone iterative technique, Axioms, 9(2) (2020), 57.
  • [13] J. G. Abdulahad, S. A. Murad, Local existence theorem of fractional differential equations in Lp space, Raf. J. Comp. Maths, 9(2) (2012), 71-78.
  • [14] R. P. Agarwal, V. Lupulescu, D. O’Regan, Lp solutions for a class of fractional integral equations, J. Integral Equ. Appl., 29(2) (2017), 251-270.
  • [15] S. Arshad, V. Lupulescu, D. O’Regan, Lp solutions for fractional integral equations,, Fract. Calc. Appl., 17(1) (2014), 259-276.
  • [16] B. Dong, Z. Fu, and J. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations,, Sci. China Math., 61(10) (2018), 1807-1824.
  • [17] A. Refice, M. Inc, M. S. Hashemi, M. S. Souid, Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces Lp (.), J. Geom. Phys., 178 (2022), 104554.
  • [18] A. Refice, M. S. Souid, Juan L.G. Guirao, H. Günerhan, Terminal value problem for Riemann-Liouville fractional differential equation in the variable exponent Lebesgue space Lp(:) , Math. Meth. Appl. Sci., (2023), 1–19.
  • [19] M. S. Souid, A. Refice, K. Sitthithakerngkiet, Stability of p (.)-integrable solutions for fractional boundary value problem via piecewise constant functions, Fractal Fract., 7(2) (2023), 198.
  • [20] K. Benia, M.S. Souid, F. Jarad, M. Alqudah, T. Abdeljawad, Boundary value problem of weighted fractional derivative of a function with a respect to another function of variable order, J. Inequal. Appl., 2023(2023), 127.
  • [21] D. O’Regan, R. Agarwal, S. Hristova, M. Abbas, Existence and stability results for differential equations with a variable-order generalized proportional Caputo fractional derivative, Mathematics, 12(2) (2024), 233.
  • [22] D. O’Regan, S. Hristova, R. Agarwal, Ulam-type stability results for variable orderY-tempered Caputo fractional differential equations, Fractal Fract., 8(1) (2023), 11.
  • [23] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science Tech, 2006.
  • [24] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Springer Basel, 2013.
  • [25] H. Royden, P. Fitzpatrick, Real Analysis. Pearson Modern Classics for Advanced Mathematics Series, Pearson, 2017.
  • [26] V. S. Guliyev, S. G. Samko, Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci., 193(2) (2013), 228-248.
  • [27] H. Rafeiro, S. Samko, Variable exponent campanato spaces, J. Math. Sci., 172(1) (2011), 143-164.
  • [28] A. Benkerrouche, M. S. Souid, K. Sitthithakerngkiet, A. Hakem, Implicit nonlinear fractional differential equations of variable order, Bound. Value Probl., 2021 (2021), 64.
  • [29] M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., 62(1) (2017), 27-38.

Yıl 2024, Cilt: 7 Sayı: 2, 93 – 101, 23.05.2024

https://doi.org/10.32323/ujma.1409291

Öz

Kaynakça

  • [1] W. Orlicz, Über konjugierte exponentenfolgen, Studia Mathematica, 3(1) (1931), 200-211.
  • [2] H Nakano, Modular Semi-Ordered Spaces, Maruzen Co. Ltd., Tokyo, Japan, 1950.
  • [3] H. Nakano, Topology and Topological Linear Spaces, Maruzen Co., Ltd., Tokyo, 1951.
  • [4] I. I. Sharapudinov, Topology of the space Lp(t)(0;1), Matematicheskie Zametki, 26(4) (1979), 613-632.
  • [5] O. Kovavcik, J. Rakosnik, On spaces l p(x) and wk;p(x), Czechoslovak Math. J., 41(116) (1991), 592-618.
  • [6] X.L. Fan, D. Zhao, On the spaces l p(x)(w) and wk;p(x)(w), J. Math. Anal. Appl., 263(2) (2001), 424-446.
  • [7] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56(4) (2008), 874-882.
  • [8] H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, MOS-SIAM series on optimization, 2014.
  • [9] E. M. Bollt, R. Chartrand, S. Esedoğlu, P. Schultz, K. R. Vixie, Graduated adaptive image denoising: Local compromise between total variation and isotropic diffusion, Adv. Comput. Math., 31 (2009), 61-85.
  • [10] Y. Chen, W. Guo, Q. Zeng, Y. Liu, A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images, Inverse Probl. Imaging, 2(2) (2008), 205-224.
  • [11] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(4) (2006), 1383-1406.
  • [12] C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with y-caputo derivative via monotone iterative technique, Axioms, 9(2) (2020), 57.
  • [13] J. G. Abdulahad, S. A. Murad, Local existence theorem of fractional differential equations in Lp space, Raf. J. Comp. Maths, 9(2) (2012), 71-78.
  • [14] R. P. Agarwal, V. Lupulescu, D. O’Regan, Lp solutions for a class of fractional integral equations, J. Integral Equ. Appl., 29(2) (2017), 251-270.
  • [15] S. Arshad, V. Lupulescu, D. O’Regan, Lp solutions for fractional integral equations,, Fract. Calc. Appl., 17(1) (2014), 259-276.
  • [16] B. Dong, Z. Fu, and J. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations,, Sci. China Math., 61(10) (2018), 1807-1824.
  • [17] A. Refice, M. Inc, M. S. Hashemi, M. S. Souid, Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces Lp (.), J. Geom. Phys., 178 (2022), 104554.
  • [18] A. Refice, M. S. Souid, Juan L.G. Guirao, H. Günerhan, Terminal value problem for Riemann-Liouville fractional differential equation in the variable exponent Lebesgue space Lp(:) , Math. Meth. Appl. Sci., (2023), 1–19.
  • [19] M. S. Souid, A. Refice, K. Sitthithakerngkiet, Stability of p (.)-integrable solutions for fractional boundary value problem via piecewise constant functions, Fractal Fract., 7(2) (2023), 198.
  • [20] K. Benia, M.S. Souid, F. Jarad, M. Alqudah, T. Abdeljawad, Boundary value problem of weighted fractional derivative of a function with a respect to another function of variable order, J. Inequal. Appl., 2023(2023), 127.
  • [21] D. O’Regan, R. Agarwal, S. Hristova, M. Abbas, Existence and stability results for differential equations with a variable-order generalized proportional Caputo fractional derivative, Mathematics, 12(2) (2024), 233.
  • [22] D. O’Regan, S. Hristova, R. Agarwal, Ulam-type stability results for variable orderY-tempered Caputo fractional differential equations, Fractal Fract., 8(1) (2023), 11.
  • [23] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science Tech, 2006.
  • [24] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Springer Basel, 2013.
  • [25] H. Royden, P. Fitzpatrick, Real Analysis. Pearson Modern Classics for Advanced Mathematics Series, Pearson, 2017.
  • [26] V. S. Guliyev, S. G. Samko, Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci., 193(2) (2013), 228-248.
  • [27] H. Rafeiro, S. Samko, Variable exponent campanato spaces, J. Math. Sci., 172(1) (2011), 143-164.
  • [28] A. Benkerrouche, M. S. Souid, K. Sitthithakerngkiet, A. Hakem, Implicit nonlinear fractional differential equations of variable order, Bound. Value Probl., 2021 (2021), 64.
  • [29] M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., 62(1) (2017), 27-38.

Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
BölümMakaleler
Yazarlar

Mokhtar Mokhtari University of Tiaret 0000-0002-2504-5278 Algeria

Ahmed Refice Djillali Liabes University, 0000-0002-8906-6211 Algeria

Mohammed Said Souıd University of Tiaret, Algeria 0000-0002-4342-5231 Algeria

Ali Yakar TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ 0000-0003-1160-577X Türkiye

Erken Görünüm Tarihi16 Mayıs 2024
Yayımlanma Tarihi23 Mayıs 2024
Gönderilme Tarihi24 Aralık 2023
Kabul Tarihi2 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APAMokhtari, M., Refice, A., Souıd, M. S., Yakar, A. (2024). On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Universal Journal of Mathematics and Applications, 7(2), 93-101. https://doi.org/10.32323/ujma.1409291
AMAMokhtari M, Refice A, Souıd MS, Yakar A. On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Univ. J. Math. Appl. Mayıs 2024;7(2):93-101. doi:10.32323/ujma.1409291
ChicagoMokhtari, Mokhtar, Ahmed Refice, Mohammed Said Souıd, ve Ali Yakar. “On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces With Variable Exponent”. Universal Journal of Mathematics and Applications 7, sy. 2 (Mayıs 2024): 93-101. https://doi.org/10.32323/ujma.1409291.
EndNoteMokhtari M, Refice A, Souıd MS, Yakar A (01 Mayıs 2024) On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Universal Journal of Mathematics and Applications 7 2 93–101.
IEEEM. Mokhtari, A. Refice, M. S. Souıd, ve A. Yakar, “On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent”, Univ. J. Math. Appl., c. 7, sy. 2, ss. 93–101, 2024, doi: 10.32323/ujma.1409291.
ISNADMokhtari, Mokhtar vd. “On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces With Variable Exponent”. Universal Journal of Mathematics and Applications 7/2 (Mayıs 2024), 93-101. https://doi.org/10.32323/ujma.1409291.
JAMAMokhtari M, Refice A, Souıd MS, Yakar A. On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Univ. J. Math. Appl. 2024;7:93–101.
MLAMokhtari, Mokhtar vd. “On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces With Variable Exponent”. Universal Journal of Mathematics and Applications, c. 7, sy. 2, 2024, ss. 93-101, doi:10.32323/ujma.1409291.
VancouverMokhtari M, Refice A, Souıd MS, Yakar A. On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Univ. J. Math. Appl. 2024;7(2):93-101.

Download or read online: Click here