Screening Organic Acid Contents of Tomato Landraces Collected From Aegean-Mediterranean Region of Anatolia

Yıl 2024, Cilt: 11 Sayı: 2, 583 – 596, 30.04.2024

https://doi.org/10.30910/turkjans.1454880

Öz

Tomato landraces can serve as valuable sources for breeding new cultivars aimed at enhancing fruit quality in terms of organic acids. Nineteen tomato landraces spread along the Mediterranean coasts of Anatolia were evaluated to determine their basic internal quality parameters and organic acid composition. The parameters assessed included fruit weight, diameter, length, pH, titrable acidity (TA %), soluble solid content (SSC%), SSC/TA ratio, and organic acids, such as oxalic (OA), tartaric (TarA), malic (MA), malonic (MalA), lactic (LA), acetic (AA), citric (CA), and ascorbic acids (AscA). Significant diversity was observed among the different landraces concerning these traits. Citric acid was found to be the most abundant organic acid within the landraces. Notably, the highest and lowest values for CA were recorded in Ege 8 (105.73 mg g-1) and TR62707 (31.10 mg g-1), respectively, making them promising sources for future breeding programs. Ascorbic acid (AscA) exhibited the lowest content among all the organic acids, ranging from 0.06 to 0.12 mg.g-1 (equivalent to 64-116 µg.g-1). Moreover, the landrace TR49646 displayed the highest malic acid content (8.23 mg g-1), making it a potential source for obtaining high malic acid content. Conversely, Ege 6 showed the lowest malic acid content (5.11 mg g-1). For health purposes, the landrace TR63233 was identified as having the lowest oxalic acid content. Multidimensional scale analysis further confirmed the potential candidates identified by the ANOVA and one-way ANOM tests. The results revealed a considerable diversity among the evaluated landraces, and the identified traits could be instrumental in selecting and breeding new cultivars with improved characteristics.

Anahtar Kelimeler

citric acid, diversity, organic acids, malic acid, oxalic acid, tomatoes.

Proje Numarası

This study was supported by Canakkale Onsekiz Mart University, The Scientific Research Coordination Unit, project grand number FHD-216-911.

Kaynakça

  • Acosta-Quezada, P.G., Raigon, M.D., Riofrio-Cuenca, T., Garcia-Martinez, M.D., Plazas, M., Burneo, J.I., Figueroa, J.G., Vilanova, S., Prohens, J., 2015. Diversity for chemical composition in a collection of different varietaltypes of tree tomato (Solanum betaceum), an Andean exotic fruit. Food Chem 169: 327-335.
  • Agong, S.G., Shittenhelm, S., Friedt, W., 2001. Genotypic variation of Kenyan tomato (Lycopersicon esculentum L.) germplasm. The J of Food Tech in Africa 6; 13–17.
  • Anonymous, 1968. International Federation of Fruit Juice Producers No: 3.
  • Arnetoli, M., Montegrossi, G., Bucciant, A., Gonnelli, C., 2008. Determination of organic acids in plants of Silene paradoxa l. by HPLC. J Agric Food Chem 56: 789–795.
  • Augustin, J., Beck, C., Marousek, G.I., 1981. Quantitative determination of ascorbic acid in potatoes and potato products by high performance liquid chromatography. J of Food Sci 46: 312-316.
  • Baldwin, E.A., Nisperos-Carriedo, M.O., Baker, R., Scott, J.W., 1991. Quantitative analysis of flavour parameters in six parameters in six Florida tomato cultivars (Lycopersicon esculentum Mill.). J Agric Food Chem 39: 1135–1140.
  • Baldwin, E.A., Scott, J.W., Einstein, M.A., Malundo, T.M.M., Carr, B.T., Shewfelt, R.L., and Tandon, K.S., 1998.
  • Relationship between sensory and instrumental analysis for tomato flavor. J Am Soc Horti Sci 123: 906–915.
  • Bayraktar, K., 1953. Comparative studies on the characteristics and technological values of native and American tomato varieties cultivated in vegetable fields. Ankara University, Faculty of Agriculture 42, Ankara. Work document.
  • Bayraktar, K., 1966. Vegetable Growing. Vol I. Ege University, İzmir (in Turkish).
  • Boyes, S., Strübi, P., 1997. Organic acid and sugar composition of three New Zealand grown tamarillo varieties (Solanum betaceum (Cav.)). NZ J Crop and Hort. Sci. 25: 79–83.
  • Breksa, A., Robertson, L., Labate, J., King, B., King, D., 2015. Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods. J Food Comp and Analysis. 42: 16-25.
  • Bucheli, P., Voirol, E., Torre, R.R., Lopez, J., Rytz, A., Tanksley, S.D., Petiard, V., de la Torre, R., 1999. Definition of non-volatile markers for flavor of tomato (Lycopersicon esculentum Mill.) as tools in selection and breeding. J Agric Food Chem 47: 659–664.
  • Casals, J., Pascual, L., Canizares, J., Cebolla-Cornejo, J., Casanas, F., Nuez, F., 2011. The risks of success in quality vegetable markets: Possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. Sci Hort 130: 78–84.
  • Causse, M., Buret, M., Robini, K., Verschave, P., 2003. Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J Food Sci 68: 2342–2350.
  • Causse, M., Saliba-Colombani, V., Lecomte, L., Duffé, P., Rousselle, P., Buret, M., 2002. QTL analysis of fruit quality in fresh market tomato: A few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53: 377, 2089-2098.
  • Cavicchi, S., Silvetti, E.,1976. Yield in tomato. I. Multiple regression between yield and yield components. Gen Agri 30: 293-313.
  • Cebolla-Cornejo, J., Rosello, S., Nuez, F., 2013. Phenotypic and genetic diversity of Spanish tomato landraces. Sci Hort 162: 150–164.
  • Choi, S.H., Kim, D.S., Kozukue, N., Kim, H.J., Nishitani, Y., Mizuno, M., Levin, C.E., Friedman, M., 2014. Protein, free amino acid, phenolic, b-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 green-house-grown commercial cherry tomato varieties. J Food Comp Analysis 34 (2): 115–127.
  • Davies, J.N., Hobson, G.E., 1981. The constituents of tomato fruit the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Technol. 15: 205–280.
  • FAO, 2021. Food and agriculture organization of the UN statistics division website. Available: http://www.fao.org/faostat/en/#data/QC/visualize. 20 Dec.2021.
  • Foolad, M.R., 2007. Genome mapping and molecular breeding of tomato. Int J of Plant Gen. 52.
  • Fulton, T.M., Bucheli, P., Voirol, E., Lopez, J., Petiard & Tanksley, S.D., 2002. Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127: 163–177.
  • Galiana-Balaguer, L., Rosello, S., Nuez, F., 2006. Characterization and selection of balanced sources of variability for breeding tomato (Lycopersicon) internal quality. Gen Res and Crop Evol 53: 907–923.
  • Grandillo, S., Zamir, D., Tanskley, S.D., 1999. Genetic improvement of processing tomatoes: A 20 years perspective. Euphytica 110: 85–97.
  • Henareh, M., Dursun, A., Mandoulakani, B.A., 2015. Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters. Acta Sci Pol Hort Cultus 14(2): 87–96.
  • Karagöz, A., 2003. Plant genetic resources conservation in Turkey. Acta Horti 598: 17-25.
  • Kaya, S., 2012. Researches on determining local table tomato populations available for organic farming and usage opportunities to improve organic cultivars. Doctorate Thesis. Ege University, Turkey.
  • Klee, H.J., Tieman, D.M., 2013. Genetic challenges of flavor improvement in tomato. Trends in genetics 29: 4.
  • Malundo, T.M.M., Shewfelt, R.L., Scott, J.W., 1995. Flavor quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Biol Technol 6:103–10.
  • Marconi, O., Floridi, S., Montanari, L., 2007. Organic acids profile in tomato juice by HPLC with UV detection. J of Food Quality 30: 253–266.
  • Mata, M.C.S., Hurtado, M.C., Rosell, S., Ripolles, S.R., Galiana-Balaguer, L., Isasa, M.E.T., Vifials, F.N., 2000. Breeding for flavour of fresh market tomato: sources for increasing acid content. Acta Physiol Plant 22: 250.
  • Mendeş, M., Yiğit, S., 2013. Comparison of ANOVA-F and ANOM tests with regard to type I error rate and test power. J of Statistical Comp Simul 83(11): 2093-2104.
  • Mendeş, M., Yiğit, S., 2018. An alternative approach for multiple comparison problems when there are a large number of groups: ANOM technique. J Animal & Plant Sci. 28: (4).
  • Mitjavila, S., 1990. Sustancias naturales nocivas en los alimentos. In: Derache J (ed) Toxicologı´a y seguridad de los alimentos. Omega, Barcelona
  • Mucha, A.P., Almeida, C.M.R., Bordalo, A.A., Vasconcelos, M.T.S.D., 2005. Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Est Coast Shelf Sci 65:191–198.
  • Negri, V., Maxted, N., Veteläinen, M., 2009. European landrace conservation: an introduction. In: Veteläinen, M., Negri, V., Maxted, N. (Eds.), European Landraces:On-farm Conservation Management and Use, Biodiversity Technical Bulletin 15.Bioversity International, Macaresse, pp. 1–22.
  • Oraman, M.N., 1968. Vegetable science. (in Turkish). Ankara University.
  • Pereira, C., Barrosa, L., Carvalho, A.M., Isabel, C., Ferreira, F.R., 2013. Use of UFLC-PDA for the analysis of organic acids in thirty five species of food and medicinal plants. Food Anal Methods 6:1337–1344
  • Petro-Turza. M., 1987. Flavor of tomato and tomato products. Food Rev Int 2 (3): 309-351.
  • Reddy, B.R., Reddy. M.P., Begum, H., Sunil, N., 2013. Genetic diversity studies in tomato (Solanum lycopersicum L.). J Agri Vet Sci 4: 53–55.
  • Ruiz, J.J., Alonso, A., Garcia-Martinez, S., Valero, M., Basco, P., Ruiz-Bevia, F., 2005. Quantitive analyses of flavour volatiles detects differences among closely related traditional cultivars of tomato. J of Sci Food Agr 85: 54–60.
  • Ruiz, J.J., Valero, M., García‐Martínez, S., Serrano, M., Moral, R., 2006. Effect of recent genetic improvement on some analytical parameters of tomato fruit quality.Comm Soil Sci and Plant Anal 37:15-20, 2647-2658.
  • Sacco, A., Ruggieri, V., Parisi, M., Festa, G., Rigano, M.M., Picarella, M.E., Mazzucato, A., Barone, A., 2015. Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS ONE 10(9).
  • Saliba Colombani, V., Causse, M., Langlois, D., Philouze, J., Buret, M., 2001. Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Gen 102: 259–272.
  • Salles, C., Nicklaus, S., Septier, C., 2003. Determination and gustatory properties of taste-active compounds in tomato juice. Food Chem 81: 395–402.
  • Schauer, N., Zamir, D., Fernie, A.R., 2005. Metabolic profiling of leaves and fruit of wild species tomato: A survey of the Solanum lycopersicum complex. J Exp Botany 56: 410, 297-307.
  • Stevens, M.A., Kader, A.A., Albright-Holton, M., Algazi, M., 1977. Genotypic Variation for flavour and composition in fresh market tomatoes. J Am Soc Hort Sci 102: 680–689.
  • Suarez, M.H., Rodriguez, E.R., Romero, C.D., 2008. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Eur Food Res Technol 226: 423.
  • Tan, A., 2010. The status of plant genetic resources for food and agriculture in Turkey. Regarding the conservation and sustainable use of plant resources for food and agriculture, the second country report on Turkey (in Turkish).
  • Tandon, K.S., Baldwin, E.A., Scott, J.W., Shewfelt, R.L., 2003. Linking sensory descriptors to volatile and nonvolatile components of fresh tomato flavor. J. of Food Sci 68: 2366–2371.
  • Tembe, K.O., Chemining’wa, G., Ambuko, J., Owino, W., 2018. Evaluation of African tomato landraces (Solanum lycopersicum) based on morphological and horticultural traits. Agri and Nat Res 52: 536-542.
  • Thorne, S.N, Efiuvwevwere, B.J.O., 1988. Changes in organic acids in chilled tomato fruit (Lycopersicon esculentum Mill.). J Sci Food Agric 44: 309–319.
  • Thybo, A.K., Edelenbos, M., Christensen, L.P., Sørensen, J.N., Thorup-Kristensen, 2006. Effect of organic growing systems on sensory quality and chemical composition of tomatoes. LWT-Food Sci Tech 39:835–843.
  • Tieman, D.M., Bliss, P., McIntyre, L.M., Blandon-Ubeda, A., Bies, D., Odabaşı, A.Z., Rodriguez, G.R., van der Knaap, E., Taylor, M.G., Goulet, C., Mageroy, M.H., et. al, 2012. The chemical interactions underlying tomato flavor preferences. Curr. Biol. 22, 1–5 Elsevier Ltd. Working paper.
  • Yiğit, S., Mendeş, M., 2016. Usage of multidimensional scaling technique for evaluating performances of multivariate normality tests. British J App Sci & Technol. 16: 1–6
  • Yılmaz, E., 2001. The chemistry of fresh tomato flavor. Turk J Agric Forestry 25: 149-155.

Anadolu'nun Ege-Akdeniz Kıyılarindan Toplanan Yerel Domates Çeşitlerinin Organik Asit İçeriklerinin Belirlenmesi

Yıl 2024, Cilt: 11 Sayı: 2, 583 – 596, 30.04.2024

https://doi.org/10.30910/turkjans.1454880

Öz

Yerel domates çeşitleri, organik asitler açısından meyve kalitesini arttırmayı amaçlayan yeni çeşitlerin geliştirilmesi için değerli kaynaklar olarak hizmet edebilir. Bu amaçla, Anadolu’nun Akdeniz kıyılarına yayılan 19 yerel domates çeşidi, temel meyve kalite parametreleri ve organik asit içeriklerinin belirlenmesi amacıyla taranmıştır. Çalışma kapsamında yerel domates çeşitlerinde meyve ağırlığı, meyve çapı, meyve boyu, pH, titre edilebilir toplam asitlik (%TETA), suda çözünebilir kuru madde miktarı (%SÇKM), SÇKM/TETA oranı ve oksalik (OA), tartarik (TarA), malik aist (MA), malonik (MalA), laktik (LA), asetik (AA), sitrik (CA) ve askorbik asitler (AscA) içerikleri belirlenmiştir. Elde edilen verilere göre bütün özellikler göz önüne alındığında yerel çeşitler arasında önemli farklılıklar gözlenmiştir. Yerel domates çeşitlerinde beklendiği gibi en fazla bulunan organik asitin, sitrik asit olduğu belirlenmiştir. Dikkat çekici bir şekilde, CA için en yüksek ve en düşük değerler sırasıyla Ege 8 (105,73 mg/g) ve TR62707’de (31,10 mg/g) olarak kaydedilmiş olup, bu da onları gelecekteki ıslah programları için umut verici kaynaklar haline getirmiştir. Askorbik asit (AscA), 0,06 ila 0,12 mg.g-1 (64-116 µg.g-1’e eşdeğer) arasında değişen miktarlar ile tüm organik asitler arasında en az belirlenen asit olmuştur. Ayrıca, TR49646 kod numaralı yerel çeşit en yüksek malik asit (8,23 mg/g) içeren çeşit olarak belirlenmiş ve bu sonuç bu çeşidi yüksek malik asit içeriği elde etmek için ileriki yıllarda kullanılabilecek potansiyel bir genetik kaynak olarak tanımlanmıştır. Bunun tersine, Ege 6 en düşük malik asit içeriğini (5.11 mg/g) göstermiştir. İnsan sağlığı açısından, TR63233 kod numaralı yerel çeşit en düşük oksalik asit içeriğine sahip çeşit olarak belirlenmiştir. Çok boyutlu ölçek analizi, ANOVA ve tek yönlü ANOM testleri tarafından belirlenen potansiyel adayları doğrulamıştır. Sonuçlar, değerlendirilen yerel çeşitler arasında önemli bir çeşitlilik olduğunu ortaya koymuş ve tanımlanan özelliklerin, gelişmiş özelliklere sahip yeni çeşitlerin ıslahında gelecek yıllarda potansiyel olarak kullanılabilir olduğunu ortaya koymuştur.

Anahtar Kelimeler

Sitrik asit, çeşitlilik, organik asit, malik asit, okzalik asit, domates.

Etik Beyan

The authors declare that no competing interests exist..

Destekleyen Kurum

Çanakkale Onsekiz Mart University, The Scientific Research Coordination Unit

Proje Numarası

This study was supported by Canakkale Onsekiz Mart University, The Scientific Research Coordination Unit, project grand number FHD-216-911.

Teşekkür

Authors would like to thank to Dr. Tutku AK for English editing and to Dr. Soner YIGIT for statistical analysis.

Kaynakça

  • Acosta-Quezada, P.G., Raigon, M.D., Riofrio-Cuenca, T., Garcia-Martinez, M.D., Plazas, M., Burneo, J.I., Figueroa, J.G., Vilanova, S., Prohens, J., 2015. Diversity for chemical composition in a collection of different varietaltypes of tree tomato (Solanum betaceum), an Andean exotic fruit. Food Chem 169: 327-335.
  • Agong, S.G., Shittenhelm, S., Friedt, W., 2001. Genotypic variation of Kenyan tomato (Lycopersicon esculentum L.) germplasm. The J of Food Tech in Africa 6; 13–17.
  • Anonymous, 1968. International Federation of Fruit Juice Producers No: 3.
  • Arnetoli, M., Montegrossi, G., Bucciant, A., Gonnelli, C., 2008. Determination of organic acids in plants of Silene paradoxa l. by HPLC. J Agric Food Chem 56: 789–795.
  • Augustin, J., Beck, C., Marousek, G.I., 1981. Quantitative determination of ascorbic acid in potatoes and potato products by high performance liquid chromatography. J of Food Sci 46: 312-316.
  • Baldwin, E.A., Nisperos-Carriedo, M.O., Baker, R., Scott, J.W., 1991. Quantitative analysis of flavour parameters in six parameters in six Florida tomato cultivars (Lycopersicon esculentum Mill.). J Agric Food Chem 39: 1135–1140.
  • Baldwin, E.A., Scott, J.W., Einstein, M.A., Malundo, T.M.M., Carr, B.T., Shewfelt, R.L., and Tandon, K.S., 1998.
  • Relationship between sensory and instrumental analysis for tomato flavor. J Am Soc Horti Sci 123: 906–915.
  • Bayraktar, K., 1953. Comparative studies on the characteristics and technological values of native and American tomato varieties cultivated in vegetable fields. Ankara University, Faculty of Agriculture 42, Ankara. Work document.
  • Bayraktar, K., 1966. Vegetable Growing. Vol I. Ege University, İzmir (in Turkish).
  • Boyes, S., Strübi, P., 1997. Organic acid and sugar composition of three New Zealand grown tamarillo varieties (Solanum betaceum (Cav.)). NZ J Crop and Hort. Sci. 25: 79–83.
  • Breksa, A., Robertson, L., Labate, J., King, B., King, D., 2015. Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods. J Food Comp and Analysis. 42: 16-25.
  • Bucheli, P., Voirol, E., Torre, R.R., Lopez, J., Rytz, A., Tanksley, S.D., Petiard, V., de la Torre, R., 1999. Definition of non-volatile markers for flavor of tomato (Lycopersicon esculentum Mill.) as tools in selection and breeding. J Agric Food Chem 47: 659–664.
  • Casals, J., Pascual, L., Canizares, J., Cebolla-Cornejo, J., Casanas, F., Nuez, F., 2011. The risks of success in quality vegetable markets: Possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. Sci Hort 130: 78–84.
  • Causse, M., Buret, M., Robini, K., Verschave, P., 2003. Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J Food Sci 68: 2342–2350.
  • Causse, M., Saliba-Colombani, V., Lecomte, L., Duffé, P., Rousselle, P., Buret, M., 2002. QTL analysis of fruit quality in fresh market tomato: A few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53: 377, 2089-2098.
  • Cavicchi, S., Silvetti, E.,1976. Yield in tomato. I. Multiple regression between yield and yield components. Gen Agri 30: 293-313.
  • Cebolla-Cornejo, J., Rosello, S., Nuez, F., 2013. Phenotypic and genetic diversity of Spanish tomato landraces. Sci Hort 162: 150–164.
  • Choi, S.H., Kim, D.S., Kozukue, N., Kim, H.J., Nishitani, Y., Mizuno, M., Levin, C.E., Friedman, M., 2014. Protein, free amino acid, phenolic, b-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 green-house-grown commercial cherry tomato varieties. J Food Comp Analysis 34 (2): 115–127.
  • Davies, J.N., Hobson, G.E., 1981. The constituents of tomato fruit the influence of environment, nutrition, and genotype. Crit. Rev. Food Sci. Technol. 15: 205–280.
  • FAO, 2021. Food and agriculture organization of the UN statistics division website. Available: http://www.fao.org/faostat/en/#data/QC/visualize. 20 Dec.2021.
  • Foolad, M.R., 2007. Genome mapping and molecular breeding of tomato. Int J of Plant Gen. 52.
  • Fulton, T.M., Bucheli, P., Voirol, E., Lopez, J., Petiard & Tanksley, S.D., 2002. Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127: 163–177.
  • Galiana-Balaguer, L., Rosello, S., Nuez, F., 2006. Characterization and selection of balanced sources of variability for breeding tomato (Lycopersicon) internal quality. Gen Res and Crop Evol 53: 907–923.
  • Grandillo, S., Zamir, D., Tanskley, S.D., 1999. Genetic improvement of processing tomatoes: A 20 years perspective. Euphytica 110: 85–97.
  • Henareh, M., Dursun, A., Mandoulakani, B.A., 2015. Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters. Acta Sci Pol Hort Cultus 14(2): 87–96.
  • Karagöz, A., 2003. Plant genetic resources conservation in Turkey. Acta Horti 598: 17-25.
  • Kaya, S., 2012. Researches on determining local table tomato populations available for organic farming and usage opportunities to improve organic cultivars. Doctorate Thesis. Ege University, Turkey.
  • Klee, H.J., Tieman, D.M., 2013. Genetic challenges of flavor improvement in tomato. Trends in genetics 29: 4.
  • Malundo, T.M.M., Shewfelt, R.L., Scott, J.W., 1995. Flavor quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Biol Technol 6:103–10.
  • Marconi, O., Floridi, S., Montanari, L., 2007. Organic acids profile in tomato juice by HPLC with UV detection. J of Food Quality 30: 253–266.
  • Mata, M.C.S., Hurtado, M.C., Rosell, S., Ripolles, S.R., Galiana-Balaguer, L., Isasa, M.E.T., Vifials, F.N., 2000. Breeding for flavour of fresh market tomato: sources for increasing acid content. Acta Physiol Plant 22: 250.
  • Mendeş, M., Yiğit, S., 2013. Comparison of ANOVA-F and ANOM tests with regard to type I error rate and test power. J of Statistical Comp Simul 83(11): 2093-2104.
  • Mendeş, M., Yiğit, S., 2018. An alternative approach for multiple comparison problems when there are a large number of groups: ANOM technique. J Animal & Plant Sci. 28: (4).
  • Mitjavila, S., 1990. Sustancias naturales nocivas en los alimentos. In: Derache J (ed) Toxicologı´a y seguridad de los alimentos. Omega, Barcelona
  • Mucha, A.P., Almeida, C.M.R., Bordalo, A.A., Vasconcelos, M.T.S.D., 2005. Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments. Est Coast Shelf Sci 65:191–198.
  • Negri, V., Maxted, N., Veteläinen, M., 2009. European landrace conservation: an introduction. In: Veteläinen, M., Negri, V., Maxted, N. (Eds.), European Landraces:On-farm Conservation Management and Use, Biodiversity Technical Bulletin 15.Bioversity International, Macaresse, pp. 1–22.
  • Oraman, M.N., 1968. Vegetable science. (in Turkish). Ankara University.
  • Pereira, C., Barrosa, L., Carvalho, A.M., Isabel, C., Ferreira, F.R., 2013. Use of UFLC-PDA for the analysis of organic acids in thirty five species of food and medicinal plants. Food Anal Methods 6:1337–1344
  • Petro-Turza. M., 1987. Flavor of tomato and tomato products. Food Rev Int 2 (3): 309-351.
  • Reddy, B.R., Reddy. M.P., Begum, H., Sunil, N., 2013. Genetic diversity studies in tomato (Solanum lycopersicum L.). J Agri Vet Sci 4: 53–55.
  • Ruiz, J.J., Alonso, A., Garcia-Martinez, S., Valero, M., Basco, P., Ruiz-Bevia, F., 2005. Quantitive analyses of flavour volatiles detects differences among closely related traditional cultivars of tomato. J of Sci Food Agr 85: 54–60.
  • Ruiz, J.J., Valero, M., García‐Martínez, S., Serrano, M., Moral, R., 2006. Effect of recent genetic improvement on some analytical parameters of tomato fruit quality.Comm Soil Sci and Plant Anal 37:15-20, 2647-2658.
  • Sacco, A., Ruggieri, V., Parisi, M., Festa, G., Rigano, M.M., Picarella, M.E., Mazzucato, A., Barone, A., 2015. Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS ONE 10(9).
  • Saliba Colombani, V., Causse, M., Langlois, D., Philouze, J., Buret, M., 2001. Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Gen 102: 259–272.
  • Salles, C., Nicklaus, S., Septier, C., 2003. Determination and gustatory properties of taste-active compounds in tomato juice. Food Chem 81: 395–402.
  • Schauer, N., Zamir, D., Fernie, A.R., 2005. Metabolic profiling of leaves and fruit of wild species tomato: A survey of the Solanum lycopersicum complex. J Exp Botany 56: 410, 297-307.
  • Stevens, M.A., Kader, A.A., Albright-Holton, M., Algazi, M., 1977. Genotypic Variation for flavour and composition in fresh market tomatoes. J Am Soc Hort Sci 102: 680–689.
  • Suarez, M.H., Rodriguez, E.R., Romero, C.D., 2008. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Eur Food Res Technol 226: 423.
  • Tan, A., 2010. The status of plant genetic resources for food and agriculture in Turkey. Regarding the conservation and sustainable use of plant resources for food and agriculture, the second country report on Turkey (in Turkish).
  • Tandon, K.S., Baldwin, E.A., Scott, J.W., Shewfelt, R.L., 2003. Linking sensory descriptors to volatile and nonvolatile components of fresh tomato flavor. J. of Food Sci 68: 2366–2371.
  • Tembe, K.O., Chemining’wa, G., Ambuko, J., Owino, W., 2018. Evaluation of African tomato landraces (Solanum lycopersicum) based on morphological and horticultural traits. Agri and Nat Res 52: 536-542.
  • Thorne, S.N, Efiuvwevwere, B.J.O., 1988. Changes in organic acids in chilled tomato fruit (Lycopersicon esculentum Mill.). J Sci Food Agric 44: 309–319.
  • Thybo, A.K., Edelenbos, M., Christensen, L.P., Sørensen, J.N., Thorup-Kristensen, 2006. Effect of organic growing systems on sensory quality and chemical composition of tomatoes. LWT-Food Sci Tech 39:835–843.
  • Tieman, D.M., Bliss, P., McIntyre, L.M., Blandon-Ubeda, A., Bies, D., Odabaşı, A.Z., Rodriguez, G.R., van der Knaap, E., Taylor, M.G., Goulet, C., Mageroy, M.H., et. al, 2012. The chemical interactions underlying tomato flavor preferences. Curr. Biol. 22, 1–5 Elsevier Ltd. Working paper.
  • Yiğit, S., Mendeş, M., 2016. Usage of multidimensional scaling technique for evaluating performances of multivariate normality tests. British J App Sci & Technol. 16: 1–6
  • Yılmaz, E., 2001. The chemistry of fresh tomato flavor. Turk J Agric Forestry 25: 149-155.

Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
BölümAraştırma Makalesi
Yazarlar

Seçkin Kaya ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ 0000-0003-2157-7215 Türkiye

Okan Erken ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ 0000-0001-5177-7432 Türkiye

Bayram Kızılkaya ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ 0000-0002-3916-3734 Türkiye

Proje NumarasıThis study was supported by Canakkale Onsekiz Mart University, The Scientific Research Coordination Unit, project grand number FHD-216-911.
Erken Görünüm Tarihi30 Nisan 2024
Yayımlanma Tarihi30 Nisan 2024
Gönderilme Tarihi19 Mart 2024
Kabul Tarihi30 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 2

Kaynak Göster

APAKaya, S., Erken, O., & Kızılkaya, B. (2024). Screening Organic Acid Contents of Tomato Landraces Collected From Aegean-Mediterranean Region of Anatolia. Türk Tarım Ve Doğa Bilimleri Dergisi, 11(2), 583-596. https://doi.org/10.30910/turkjans.1454880

Download or read online: Click here