Gıda Atığı Kompostu ile Kimyasal Gübre Uygulamasının Marul ve Ispanak Yetiştirilen Vertisol Grubu Toprakların Verimliliğine EtkileriSkip to content
Gıda Atığı Kompostu ile Kimyasal Gübre Uygulamasının Marul ve Ispanak Yetiştirilen Vertisol Grubu Toprakların Verimliliğine Etkileri
Yıl 2024, Cilt: 11 Sayı: 2, 396 – 408, 30.04.2024
Serhat Gürel
https://doi.org/10.30910/turkjans.1433803
Öz
Gıda atığı kompostunun (GAK) kimyasal gübreyle beraber ve ayrı uygulanmasının toprak verimliliği üzerindeki etkilerini araştırmak amacıyla yürütülmüştür. Deneme tesadüf parselleri deneme desenine göre sera koşullarında, 2 kimyasal gübre uygulaması (kimyasal gübreli ve gübresiz), 1 kompost materyali (gıda atığı kompostu), 4 farklı doz (0, 8, 16, 24, 32 gr kg-1) ve 3 tekerrürlü olacak şekilde yürütülmüştür. Kimyasal gübre olarak 15 kg saf azot (N) da-1 için 15-15-15 NPK (N:P2O5:K2O) gübresi 2 t da-1 olacak şekilde uygulanmıştır. Genel olarak, GAK uygulamaları toprakların verimlilik parametrelerini ve bitki besin elementi içeriklerini artırmıştır. Hem marul hem de ıspanak deneme sonuçlarının ortalamaları birlikte değerlendirildiğinde; toprağın elektriksel iletkenliğini (EC) %57.21, organik maddeyi (OM) % 61.23, toplam N’yi %48.35 oranında artırdığı ve toprak reaksiyonunu (pH) %3.29 oranında düşürdüğü belirlenmiştir. Toprağa GAK + NPK eklendiğinde ise, toprağın EC’sini %76.85, OM’yi % 72.35, toplam N’yi %56.25 ve alınabilir çinkoyu (Zn) % 29.19 oranında artırdığı, toprak pH’ını da % 4.66 oranında azalttığı belirlenmiştir. Bu sonuçlardan farklı olarak; GAK tek başına uygulandığında marul bitkisinin bulunduğu topraklarda alınabilir fosfordaki (P) artış % 67.63, GAK+NPK uygulamasında artışı % 47.14 gerçekleştirmiştir. Bu parametrelerin en yüksek değerleri GAK ilavesinin 32 g kg-1 dozunda elde edilmiştir. GAK’nin toprağa uygulanması, toprağın pH’ını düşürmüş ve EC’yi arttırmıştır. GAK uygulamasıyla birlikte toprağın OM içeriği olmak üzere toplam N, ve yarayışlı P ile Zn, bakır (Cu) ve mangan (Mn) gibi bazı mikro element içeriğinde artış görülmüştür.
Anahtar Kelimeler
kompost, gıda atığı, vertisol, toprak verimliliği, marul, ıspanak
Etik Beyan
Gıda Atığı Kompostu ile Kimyasal Gübre Uygulamasının Marul ve Ispanak Yetiştirilen Vertisol Grubu Toprakların Verimliliğine Etkileri isimli araştırma, hayvan deneyleri, anket, mülakat, odak grup çalışması vb. çalışmaları içermediği için Etik kurul Onayı gerekmemektedir
Destekleyen Kurum
Bursa Uludağ Üniversitesi Bilimsel Araştırma Fonu
Proje Numarası
FHIZ-2022/835
Teşekkür
Araştırma Bursa Uludağ Üniversitesi Bilimsel Araştırma Fonu tarafından desteklenmiştir. Yardım ve desteğinden ötürü birimimize teşekkür ederim.
Kaynakça
Abd El-Gawad, A.M., Morsy, A.S.M. 2017. Integrated impact of organic and inorganic fertilizers on growth, yield of maize (Zea mays L.) and soil properties under upper Egypt conditions. J. Plant Production, Mansoura Univ., 8(11): 1103-1112. https://doi.org/10.21608/jpp.2017.41121
Aksoy, E., Dirim, M.S., Tümsavaş, Z., Özsoy, G. 2001. Formation of Uludag University Campus Area Soils, Important Physical, Chemical Properties and Classification. Research Fund of the University of Uludag, Project No:98/32, Bursa, Turkey, 118p.
Anonim. 1988. Türkiye gübreler ve gübreleme rehberi. T.C.T.O.K.B. Köy Hizmetleri genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Genel Yayın No: 151, Teknik Yayın No: T-50, Ankara, 182s.
Anonim. 1994. Method EPA 3051, Microwave assisted acid digestion of sediments, sludges, soils and oils. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, 1–14. Washington, DC: U.S. Government Printing Office
Aziz, T., Ullah, S., Sattar, A., Nasım, M., Farooq, M., Khan, M. 2010. Nutrient Availability and Maize (Zea mays) Growth in Soil Amended with Organic Manures. International Journal of Agriculture & Biology, 12(4): 621-624. 10–070/RAS/2010/12–4–621–624
Barzee, T.J., Edalati, A., El-Mashad, H., Wang, D., Scow, K., Zhang, R. 2019. Digestate Biofertilizers Support Similar or Higher Tomato Yields and Quality Than Mineral Fertilizer in a Subsurface Drip Fertigation System. Frontiers in Sustainable Food Systems, 58(3): 1-13; doi: 10.3389/fsufs.2019.00058
Bıyıklı, M., Dorak, S., Aşık, B.B. 2020. Effects of Food Industry Wastewater Treatment Sludge on Corn Plant Development and Soil Properties. Pol. J. Environ. Stud., 29(4): 2565-2578; doi: 10.15244/pjoes/112897
Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B., Scheckel, K. 2014. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials, 266(1):141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018
Bouyoucos, G.H. 1951. A recalibration of the hydrometer for making mechanical analysis of soils. Journal of Agronomy, 43(1): 434-438.
Bremner, J.M. 1965. Total nitrogen. C.A. Black (Ed) Methods of soil analysis, Part 2. American Soc. Ag. Inc. Pub. Agronomy Series, No.9, Madison, Wisconsin, pp 1149-1178.
Cecilia, J.A., Garcia-Sancho, C., Maireles-Torres, P. J., R., Luque. 2019. Industrial food waste valorization: a general overview. Biorefinery. Springer, pp. 253-277. http://dx.doi.org/10.1007/978-3-030-10961-5-11
Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresour Technol, 248: 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
Cheong, J.C., Lee, J.T., Lim, J.M., Song, S., Tan, J.K., Chiam, Z.Y., Yap., K.Y., Lim, E.Y., Zhang, J., Tan, H.T. 2020. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Science of The Total Environment, 715: 136789; doi:10.1016/j.scitotenv.2020.136789
Çerçioğlu, M., Okur, B., Delibacak, S., Ongun, A.R. 2012. Effects of Tobacco Waste and Farmyard Manure on Soil Properties and Yield of Lettuce (Lactuca sativa L. var. capitata). Communications in Soil Science and Plant Analysis, 43:875–886; doi: 10.1080/00103624.2012.653023
Çıtak, S., Sönmez, S., Koçak, F., Yasin, S. 2011. The effect of vermicompost and barnyard manure applications on the development of spinach plant and soil fertility. West Mediterranean Agricultural Research Institute. Derim Journal, 28(1): 56-59.
De Nobile, F.O., Hurtado, A.C., Prado, R.de M., de Souza, H.A., Anunciação, M.G., Palaretti, L.F., Dezem, L.A.S.N. 2021. A novel technology for processing urban waste compost as a fast releasing nitrogen source to ımprove soil properties and broccoli and lettuce production. Waste and Biomass Valorization, 12(1):6191–6203; https://doi.org/10.1007/s12649-021-01415-z
Eghball, B., Ginting, D., Gilley, J.E. 2004. Residual Effects of Manure and Compost Applications on Corn Production and Soil Properties. Agron. J., 96:442–447. htp/digitalcommons.unl.edu/biosysengfacpub/14
Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., Bolzonella, D. 2013. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin. Biochemical Engineering Journal, 70: 71-77. https://doi.org/10.1016/j.bej.2012.10.004
FAO, 2008. Guide to Laboratory Establishment for Plant Nutrient Analysis. FAO Fertilizer and Plant Nutrition Bulletin 19 (Eds. M. R. Motsara, R. N. Roy), Rome. ISBN 978–92–5–10598. https://jardindemaud.fr/pdf/MotsaraMRetal.pdf
Gezahegn, A.M. 2021. Effect of organic fertilizers on maize (Zea mays L.) production and soil physical and chemical properties. World Applied Sciences Journal, 39 (1): 11-19; doi: 10.5829/idosi.wasj.2021.11.19
Giannakis, G.V., Kourgialas, N., Paranychianakis, N.V., Nikolaidis, N.P., Kalogerakis, N. 2014. Effects of Municipal Solid Waste Compost on Soil Properties and Vegetables Growth. Compost Science & Utilization, 22(3):116-131, doi: 10.1080/1065657X.2014.899938
Gill, S.S., Jana, A.M., A., Shrivastav. 2014. Aerobic Bacterial Degradation of Kitchen waste: A review. J Microbiol Biotechnol Food Sci., 3(6): 477-483. https://doi.org/10.15414/jmbfs.2014.3.6.477-483
Giménez, A., Gómez, P. Á., Bustamante, M. A., Pérez-Murcia, M. D., Martínez-Sabater, E., Ros, M., Pascual, J.A., Egea-Gilabert, C., Fernández, J. A. 2021. Effect of Compost Extract Addition to Different Types of Fertilizers on Quality at Harvest and Shelf Life of Spinach. Agronomy, 11(4): 632; doi:10.3390/agronomy11040632
Ghinea, C., Leahu, A. 2020. Monitoring of Fruit and Vegetable Waste Composting Process: Relationship between Microorganisms and Physico-Chemical Parameters. Processes, 8(3): 302. https://doi.org/10.3390/pr8030302
Gondek, M., Weindorf, D. C., Thiel, C., Kleinheinz, G. 2020. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost Science and Utilization. 28 (2): 59-75. https://doi.org/10.1080/1065657X.2020.1772906
Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybek, A. 2011. Global food losses and food waste. The Swedish Institute for Food and Biotechnology Save Food Congress, Düsseldorf 16 May 2011.
Güneş, A., Alpaslan, M., İnal, A. 2013. Bitki Besleme ve Gübreleme. 6. Baskı, Ders Kitabı No: 533, Ankara Üniversitesi Ziraat Fakültesi Yayınları, No: 158, Ankara, ISBN 978-975-482-878-8
Hafid, H. S., Rahman, N. A. A., Shah, U. K. M., Baharuddin, A. S., Ariff, A.B. 2017. Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renew. Sust. Energ. Rev., 74 (2): 671–686; doi: 10.1016/j.rser.2017.02.071
Hashimi, R., Habibi, H.K. 2021. Effects of organic and inorganic fertilizers Applications levels on greenhouse tomato (Solanum lycopersicum) yield and soil quality in Khost Province. Asian Journal of Soil Science and Plant Nutrition, 7(4): 1-10; doi: 10.9734/AJSSPN/2021/v7i430117
Hernández, A., Castillo, H., Ojeda, D., Arras, A., López, J., Sánchez, E. 2010. Effect of Vermicompost and Compost on Lettuce Production. Chilean Journal of Agricultural Research, 70 (4): 583-589. http://dx.doi.org/10.4067/S0718-58392010000400008
Hossain, M. B., Ryu, K. S. 2017. Effects of Organic and Inorganıc Fertilizers on Lettuce (Lactuca Sativa L.) and Soil Properties. SAARC J. Agri., 15(2): 93-102. http://dx.doi.org/10.3329/sja.v15i2.35158
Jackson, M. L. 1958. Soil chemical analysis, 38–226. New Jersey, USA: Prentice Hall Inc.
Jakhro, M. I., Shah, S. I., Zehri, M. Y., Rahujo, Z. A., Ahmed, S., Ahmed, S., Jakhro, M. A. 2017. Growth and Yield of Spinach (Spinacia oleracea L.) Under Fluctuating Levels of Organic and Inorganic Fertilizers. International Journal of Development Research, 7(2):11454-11460. Issn: 2230-9926, http://www.journalijdr.com.
Jara-Samaniego, J., Pérez-Murcia, M.D., Bustamande, M.A., Paredes, C., Pérez-Espinosa, A., Gavilanes-Terán, I., López, M., Marhuenda-Egea, F.C., Brito, H., Moral, R. 2017. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador. Plos One, 12(7): 1-17; doi: 10.1371/journal.pone.0181621
Kacar, B., ve İnal. A. 2008. Bitki analizleri (1. Baskı). Nobel Akademi Yayıncılık. No.1241 Ankara, 892s.
Kacar, B. 2009. Toprak Analizleri (3. Baskı). Nobel Akademi Yayıncılık, No. 1387. Ankara, 466 s.
Kacar, B., ve Kütük, C. 2010. Gübre Analizleri (1. Baskı). Nobel Akademi Yayıncılık, No.1497, Ankara. 400 s.
Karaman, M.R., Brohi, A.R., Müftüoğlu, N.M., Öztaş, T., Zengin, M. 2012. Sürdürülebilir Toprak Verimliliği, 3. Baskı, Koyulhisar Ziraat Odası Kültür yayınları No:1, Pelin Matbacılık, 391s. ISBN 978-605-86684-0-9
Kebede, T., Diriba, D., Boki, A. 2023. The effect of organic solid waste compost on soil properties, growth, and yield of swiss chard crop (Beta vulgaris L.). Hindavi, The Scientific World Journal, Vol. 2023, Article ID 6175746, 10p; doi:10.1155/2023/6175746
Kelley, A. J., Campbell, D. N., Wilkie, A. C., Maltais-Landry, G. 2022. Compost Composition and Application Rate Have a Greater Impact on Spinach Yield and Soil Fertility Benefits Than Feedstock Origin. Horticulturae, 8(8): 688. https://doi.org/10.3390/horticulturae8080688
Kovács, A.B., Kremper, R., Kincses, I., Leviczky, Á. 2016. Influences of different organic fertilizers on nutrients of humic sandy soil and on the growth of Spinach (Spinacia oleracea L.). Agraria Debreceniensis, 70: 23-28; doi:10.34101/actaagrar/70/1812
Kumar, V., Chopra, A.K., Srivastava, S. 2016. Assessment of Heavy Metals in Spinach (Spinacia oleracea L.) Grown in Sewage Sludge Amended Soil. Communications in Soil Science and Plant Analysis, 47(2): 221-236, 10.1080/00103624.2015.1122799
Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J. 2012. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of The Total Environment. 438:477-489. https://doi.org/10.1016/j.scitotenv.2012.08.092
Leogrande, R., Lopedota, O., Fiore, A., Vitti, C., Ventrella, D., Montemurro, F. 2013. Previous crops and organic fertilizers in lettuce: effects on yields and soil properties. Journal of Plant Nutrition, 36(13):1945–1962; doi: 10.1080/01904167.2012.754042
Lindsay, W. L., ve Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42:421–28. doi:10.2136/sssaj1978.03615995004200030009x
Liu, C.W., Sung, Y., Chen, B.C., Lai, H.Y. 2014. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.). Int. J. Environ. Res. Public Health, 11: 4427-4440; doi:10.3390/ijerph110404427
Lodha, S., Sharma, S.K., Aggrawal, R.K. 2002. Inactivation of Macrophomina phaseolina propagules during composting and effect of composts on dry root rot severity and on seed yield of clusterbean. Eur J Plant Pathol, 108(3): 253-361. http://dx.doi.org/10.1023/A:1015103315068
Machado, R. M. A., Alves-Pereira, I., Lourenço, D., Ferreira, R.M.A. 2020. Effect of organic compost and inorganic nitrogen fertigation on spinach growth, phytochemical accumulation and antioxidant activity. Heliyon, 6(9): e05085. https://doi.org/10.1016/j.heliyon.2020.e05085
Maftoun, M., Moshiri, F., Karimian, N., Ronaghi, A.M. 2004. Effects of Two Organic Wastes in Combination with Phosphorus on Growth and Chemical Composition of Spinach and Soil Properties. Journal of Plant Nutrition, 27 (9): 1635-1651. http://dx.doi.org/10.1081/PLN-200026005
Mahmoud, E., Abd El-Kader, N., Elbaroudy, A., Lamyaa, A.R. 2007. Residual effects of different organic and inorganic fertilizers on spinach (Spinacia Oleracea L.) plant grown on clay and sandy soils. J.Agric.&Env.Sci.Alex.Univ., Egypt, 6 (3): 49-65.
Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S., Shahid, M., Abid, M., Ullah, S. 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. Journal of Soil Science and Plant Nutrition, 17(1): 22-32. doi:10.4067/S0718-95162017005000002
Majaule, U., Dikinya, O., Glaser, B. 2020. Interactive effects of biochar and sewage sludge on bioavailability and plant uptake of Cu, Fe, and Zn, and spinach (Spinacia oleracea L.) yields under wastewater irrigation. Agronomy, 10(1901):7-15; doi:10.3390/agronomy10121901
Mak, T. M. W., Xiong, X., Tsang, D. C. W., Yu, I. K. M., C. S. Poon. 2020. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. BioresourceTechnology, 297(2020):122497;doi:10.1016/j.biortech.2019.122497
Melikoğlu, M., Lin, C.S.K., Webb, C. 2013. Analysing global food waste problem: pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 3(2):157-164. https://doi.org/10.2478/s13531-012-0058-5
Munesue, Y., Masui, T., Fushima, T. 2015. The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environmental Economics and Policy Studies, 17:43–77; doi 10.1007/s10018-014-0083-0
Nasreen, Z., Qazi, J.I. 2012. Lab scale composting of fruits and vegetable waste at elevated temperature and forced aeration. Pak J Zool., 44(5):1285-1290; doi: 0030-9923/2012/0005-1185 $ 8.00/0
Nathan, E.M., Starbuck, C.J., Kremer, R.J., Jett, L.W. 2005. Effects of a Food Waste-Based Soil Conditioner on Soil Properties and Plant Growth. Compost Science & Utilization, 13 (2): 116-121; doi: 10.1080/1065657X.2005.10702227
Ngwira, A.R., Nyırenda, M., Taylor, D. 2013. Toward Sustainable Agriculture: An Evaluation of Compost and Inorganic Fertilizer on Soil Nutrient Status and Productivity of Three Maize Varieties Across Multiple Sites in Malawi. Agroecology and Sustainable Food Systems, 37(8):859-881; doi: 10.1080/21683565.2013.763889
O’Connor, J., Hoang, S.A., Bradley, L., Dutta, S., Xiong, X., Tsang, D.C.W., Ramadass, K., Vinu, A., Kirkham, M.B., Bolan, N.S. 2021. A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 272: 115985. https://doi.org/10.1016/j.envpol.2020.115985
Olsen, S. R., Dean, L. A. 1965. Phosphorus. In Methods of soil analysis. Part II, ed. C. A. Black, 1035–49. Madison, Wisconsin: American Society of Agronomy Inc.
Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N. 2015. Biochar: Production, chacterization, and applications. CRC Press, Frolrida, USA, 408p.
Özkan, N., Dağlıoğlu, M., Ünser, E., Müftüoğlu, N.M. 2016. Vermikompostun ıspanak (Spinacia oleracea L.) verimi ve bazın toprak özellikleri üzerine etkisi. ÇOMÜ Zir. Fak. Derg., 4 (1): 1-5, www.researchgate.net/publication/311845432
Özsoy, G. 2001. Uludağ Üniversitesi Kampüs Alanı Topraklarının Genesisi ve Sınıflandırılması. Uludağ Üniversitesi Fen Bilimleri Enstitüsü Toprak Anabilim Dalı (Yüksek Lisans Tezi), Bursa. 120s.
Pathak, A.K., ve Christopher, K. 2019. Study of socio-economic condition and constraints faced by the farmers in adoption of Bio fertilizer in Bhadohi district (Uttar Pradesh). Journal of Pharmacognosy and Phytochemistry, 8 (2): 1916-1917. e-ıssn: 2278-4136
Poore, J., ve Nemecek, T., 2018. Reducing food’s environmental impacts through producers and consumers. Science, 360(6392): 987-992. https://doi.org/10.1126/science.aaq0216
Rajaie, M., ve Tavakoly, A.R. 2016. Effects of municipal waste compost and nitrogen fertilizer on growth and mineral composition of tomato. Int J Recycl Org Waste Agricult, 5:339–347; doi: 10.1007/s40093-016-0144-4
Reis, M., Coelho, L., Beltrão, J., Domingos, I., Moura, M. 2014. Comparative effects of inorganic and organic compost fertilization on lettuce (Lactuca sativa L.). Internatıonal Journal of Energy and Envıronment, 8 (1): 137-146. https://www.researchgate.net/publication/263854351
Reyes-Torres, M., Oviedo-Ocaňa, E., Dominguez, L., Komilis, D., Sánchez, A. 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77(1): 486-499, https://doi.org/10.1016/j.wasman.2018.04.037
Reynolds, W.D., Drury, C.F., Tan, S.,Yang, M. 2015. Temporal effects of food waste compost on soil physical quality and productivity. Can. J. Soil Sci., 95(1): 251-268; doi:10.4141/CJSS-2014-114
Robarge, W. P., Edwards, A., Johnson, B. 1983. Water and waste water analysis for nitrate via nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 14 (12):1207–15. doi: 10.1080/00103628309367444
Sall, P.M., Antoun, H., Chalifour, F.P., Beauchamp, C.J. 2019. Potential use of leachate from composted fruit and vegetable waste as fertilizer for corn. Cogent Food & Agriculture, 5: 1580180, https://doi.org/10.1080/23311932.2019.1580180
Shestha, P., Small G. E., Kay, A. 2020. Quantifying nutrient recovery efficiency and loss from compost-based urban agriculture. Plos One, 15(4):1-15. https://doi.org/10.1371/journal.pone.0230996
Sogn, T. A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V.G., Eich-Greatorex, S. 2018. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture, 7:49–58. https://doi.org/10.1007/s40093-017-0188-0
Solorzano, L. 1969. Determination of ammonia in natural waters by phenol hypochlorite method. Limnology and Oceanography, 14 (5):799–801. doi: 10.4319/lo.1969.14.5.07
Sotamenoua, J., ve Parrot, L. 2013. Sustainable urban agriculture and the adoption of composts in Cameroon. Int J Agric Sustain., 11 (3): 282-295. http://dx.doi.org/10.1080/14735903.2013.811858
Swift, R. S., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Sumner, M. E. 1996. Organic matter characterization. In Methods of soil analysis. Part 3: Chemical methods. Madison, USA: Soil Science Society America Inc, 1011–69.
Tamer, N., Başalma, D., Türkmen, C., Namlı, A. 2016. Organik toprak düzenleyicilerin toprak parametreleri ve ayçiçeği (Helianthus annuus L.) bitkisinin verim ve verim öğeleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 4 (1): 11-21, e-ISSN: 2146-8141
Tampio, E., Ervasti, S., Rintala, J. 2015. Characteristics and agronomic usability of digestates from laboratory digesters treating food waste and autoclaved food waste. Journal of Cleaner Production, 94: 86-92; doi: 10.1016/j.jclepro.2015.01.086
Thi, N.B.D., Kumar, G., Lin, C.Y. 2015. An overview of food waste management in developing countries: Current status and future perspective. J Environ Manage, 157: 220-229. doi:10.1016/j.jenvman.2015.04.022
Tümsavaş, Z. 2003. Bursa ili vertisol büyük toprak grubu topraklarının verimlilik durumlarının toprak analizleriyle belirlenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 17(2): 9-21. https://dergipark.org.tr/tr/download/article-file/153982
USDA. 2013. U.S. dept. of agriculture soil taxonomy. Accessed November 14, 2013. Erişim adresi: http://www.soils.usda.gov/tecnical/ classification/osd/index.html
Voběrková, S., Maxianová, A., Schlosserová, N., Adamcová, D., Vršanská, M., Richtera, L., Gagić, M., Zloch, J., ve Vaverková, M. D. 2020. Food waste composting – Is it really so simple as stated in scientific literature? – A case study. Science of the Total Environment, 723 (1):1-14. doi:10.1016/j.scitotenv.2020.138202
Voelklein, M.A., O’Shea, R., Jakob, A., Murphy, J.D. 2017. Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. Energy, 121(1): 185-192, https://doi.org/10.1016/j.energy.2017.01.009
Walkley, A., ve Black, L. A. 1934. An examination of the Degtjareff method for determining soils organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37:29–38.
Waqas, M., Nizami, A.S., Aburiazaiza, A.S., Barakat, M.A., Rashid, M.I., Ismail, I.M.I. 2018. Optimization of food waste compost with the use of biochar. Journal of Environmental Management, 216(1): 70-81; doi:10.1016/j.jenvman.2017.06.015
Xu, F., Li, Y., Ge, X., Yang, L., Li, Y. 2018. Anaerobic digestion of food waste – Challenges and opportunities. Bioresource Technology, 247 (1) :1047-1058, https://doi.org/10.1016/j.biortech.2017.09.020
Yağmur, B., ve Okur, B. 2018. Bazı Doğal Toprak Düzenleyicilerin Mısır (Zea Mays L.) Bitkisinin Verim Parametreleri Üzerine Etkileri. Ege Üniv. Ziraat Fakültesi Dergisi, 55(4): 471-477. Doi: 10.20289/zfdergi.419225
Yang, F., Li, Y., Han, Y., Qian, W., Li, G., Lua, W. 2019. Performance of mature compost to control gaseous emissions in kitchen waste composting. Science of the Total Environment, 657(1): 262-269. https://doi.org/10.1016/j.scitotenv.2018.12.030
Zhang, L., Lee, Y.W., Jahng, G. 2011. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102(8): 5048-5059. https://doi.org/10.1016/j.biortech.2011.01.082
Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4): 929-935. https://doi.org/10.1016/j.biortech.2006.02.039
Effects of Food Waste Compost and Chemical Fertilizer Application on the Fertility of Vertisol Group Soils Growing Lettuce and Spinach
Yıl 2024, Cilt: 11 Sayı: 2, 396 – 408, 30.04.2024
Serhat Gürel
https://doi.org/10.30910/turkjans.1433803
Öz
The study was carried out to investigate the effects of applying food waste compost (FWC) on soil fertility. The experiment was carried out according to the random plot design in greenhouse conditions, with 2 chemical fertilizer applications (with and without chemical fertilizer), 1 compost material, 5 different doses (0, 8, 16, 24, 32 g kg-1) and 3 replications was carried out in such a way that. As chemical fertilizer, 15-15-15 NPK (N:P2O5:K2O) fertilizer was applied at 2 t da-1. In general, applications increased the fertility parameters and plant nutrient contents of soils. When the averages of both lettuce and spinach trial results are evaluated together; It was determined that it increased the EC of the soil by 57.21%, OM by 61.23%, total N by 48.35% and decreased pH by 3.29%. It was determined that when FWC + NPK was added to the soil, it increased the soil EC by 76.85%, OM by 72.35%, total N by 56.25% and available Zn by 29.19%, and decreased pH by 4.66%. Unlike these results; When FWC was applied alone, the increase in available P in the soil where lettuce plants were located was 67.63%, and in GAK + NPK application, the increase was 47.14%. The highest values of these parameters were obtained at the dose of 32 g kg-1 of FWC supplementation. Application of FWC to soil decreased soil pH and increased EC.
Abd El-Gawad, A.M., Morsy, A.S.M. 2017. Integrated impact of organic and inorganic fertilizers on growth, yield of maize (Zea mays L.) and soil properties under upper Egypt conditions. J. Plant Production, Mansoura Univ., 8(11): 1103-1112. https://doi.org/10.21608/jpp.2017.41121
Aksoy, E., Dirim, M.S., Tümsavaş, Z., Özsoy, G. 2001. Formation of Uludag University Campus Area Soils, Important Physical, Chemical Properties and Classification. Research Fund of the University of Uludag, Project No:98/32, Bursa, Turkey, 118p.
Anonim. 1988. Türkiye gübreler ve gübreleme rehberi. T.C.T.O.K.B. Köy Hizmetleri genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Genel Yayın No: 151, Teknik Yayın No: T-50, Ankara, 182s.
Anonim. 1994. Method EPA 3051, Microwave assisted acid digestion of sediments, sludges, soils and oils. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, 1–14. Washington, DC: U.S. Government Printing Office
Aziz, T., Ullah, S., Sattar, A., Nasım, M., Farooq, M., Khan, M. 2010. Nutrient Availability and Maize (Zea mays) Growth in Soil Amended with Organic Manures. International Journal of Agriculture & Biology, 12(4): 621-624. 10–070/RAS/2010/12–4–621–624
Barzee, T.J., Edalati, A., El-Mashad, H., Wang, D., Scow, K., Zhang, R. 2019. Digestate Biofertilizers Support Similar or Higher Tomato Yields and Quality Than Mineral Fertilizer in a Subsurface Drip Fertigation System. Frontiers in Sustainable Food Systems, 58(3): 1-13; doi: 10.3389/fsufs.2019.00058
Bıyıklı, M., Dorak, S., Aşık, B.B. 2020. Effects of Food Industry Wastewater Treatment Sludge on Corn Plant Development and Soil Properties. Pol. J. Environ. Stud., 29(4): 2565-2578; doi: 10.15244/pjoes/112897
Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B., Scheckel, K. 2014. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials, 266(1):141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018
Bouyoucos, G.H. 1951. A recalibration of the hydrometer for making mechanical analysis of soils. Journal of Agronomy, 43(1): 434-438.
Bremner, J.M. 1965. Total nitrogen. C.A. Black (Ed) Methods of soil analysis, Part 2. American Soc. Ag. Inc. Pub. Agronomy Series, No.9, Madison, Wisconsin, pp 1149-1178.
Cecilia, J.A., Garcia-Sancho, C., Maireles-Torres, P. J., R., Luque. 2019. Industrial food waste valorization: a general overview. Biorefinery. Springer, pp. 253-277. http://dx.doi.org/10.1007/978-3-030-10961-5-11
Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresour Technol, 248: 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
Cheong, J.C., Lee, J.T., Lim, J.M., Song, S., Tan, J.K., Chiam, Z.Y., Yap., K.Y., Lim, E.Y., Zhang, J., Tan, H.T. 2020. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Science of The Total Environment, 715: 136789; doi:10.1016/j.scitotenv.2020.136789
Çerçioğlu, M., Okur, B., Delibacak, S., Ongun, A.R. 2012. Effects of Tobacco Waste and Farmyard Manure on Soil Properties and Yield of Lettuce (Lactuca sativa L. var. capitata). Communications in Soil Science and Plant Analysis, 43:875–886; doi: 10.1080/00103624.2012.653023
Çıtak, S., Sönmez, S., Koçak, F., Yasin, S. 2011. The effect of vermicompost and barnyard manure applications on the development of spinach plant and soil fertility. West Mediterranean Agricultural Research Institute. Derim Journal, 28(1): 56-59.
De Nobile, F.O., Hurtado, A.C., Prado, R.de M., de Souza, H.A., Anunciação, M.G., Palaretti, L.F., Dezem, L.A.S.N. 2021. A novel technology for processing urban waste compost as a fast releasing nitrogen source to ımprove soil properties and broccoli and lettuce production. Waste and Biomass Valorization, 12(1):6191–6203; https://doi.org/10.1007/s12649-021-01415-z
Eghball, B., Ginting, D., Gilley, J.E. 2004. Residual Effects of Manure and Compost Applications on Corn Production and Soil Properties. Agron. J., 96:442–447. htp/digitalcommons.unl.edu/biosysengfacpub/14
Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., Bolzonella, D. 2013. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin. Biochemical Engineering Journal, 70: 71-77. https://doi.org/10.1016/j.bej.2012.10.004
FAO, 2008. Guide to Laboratory Establishment for Plant Nutrient Analysis. FAO Fertilizer and Plant Nutrition Bulletin 19 (Eds. M. R. Motsara, R. N. Roy), Rome. ISBN 978–92–5–10598. https://jardindemaud.fr/pdf/MotsaraMRetal.pdf
Gezahegn, A.M. 2021. Effect of organic fertilizers on maize (Zea mays L.) production and soil physical and chemical properties. World Applied Sciences Journal, 39 (1): 11-19; doi: 10.5829/idosi.wasj.2021.11.19
Giannakis, G.V., Kourgialas, N., Paranychianakis, N.V., Nikolaidis, N.P., Kalogerakis, N. 2014. Effects of Municipal Solid Waste Compost on Soil Properties and Vegetables Growth. Compost Science & Utilization, 22(3):116-131, doi: 10.1080/1065657X.2014.899938
Gill, S.S., Jana, A.M., A., Shrivastav. 2014. Aerobic Bacterial Degradation of Kitchen waste: A review. J Microbiol Biotechnol Food Sci., 3(6): 477-483. https://doi.org/10.15414/jmbfs.2014.3.6.477-483
Giménez, A., Gómez, P. Á., Bustamante, M. A., Pérez-Murcia, M. D., Martínez-Sabater, E., Ros, M., Pascual, J.A., Egea-Gilabert, C., Fernández, J. A. 2021. Effect of Compost Extract Addition to Different Types of Fertilizers on Quality at Harvest and Shelf Life of Spinach. Agronomy, 11(4): 632; doi:10.3390/agronomy11040632
Ghinea, C., Leahu, A. 2020. Monitoring of Fruit and Vegetable Waste Composting Process: Relationship between Microorganisms and Physico-Chemical Parameters. Processes, 8(3): 302. https://doi.org/10.3390/pr8030302
Gondek, M., Weindorf, D. C., Thiel, C., Kleinheinz, G. 2020. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost Science and Utilization. 28 (2): 59-75. https://doi.org/10.1080/1065657X.2020.1772906
Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybek, A. 2011. Global food losses and food waste. The Swedish Institute for Food and Biotechnology Save Food Congress, Düsseldorf 16 May 2011.
Güneş, A., Alpaslan, M., İnal, A. 2013. Bitki Besleme ve Gübreleme. 6. Baskı, Ders Kitabı No: 533, Ankara Üniversitesi Ziraat Fakültesi Yayınları, No: 158, Ankara, ISBN 978-975-482-878-8
Hafid, H. S., Rahman, N. A. A., Shah, U. K. M., Baharuddin, A. S., Ariff, A.B. 2017. Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renew. Sust. Energ. Rev., 74 (2): 671–686; doi: 10.1016/j.rser.2017.02.071
Hashimi, R., Habibi, H.K. 2021. Effects of organic and inorganic fertilizers Applications levels on greenhouse tomato (Solanum lycopersicum) yield and soil quality in Khost Province. Asian Journal of Soil Science and Plant Nutrition, 7(4): 1-10; doi: 10.9734/AJSSPN/2021/v7i430117
Hernández, A., Castillo, H., Ojeda, D., Arras, A., López, J., Sánchez, E. 2010. Effect of Vermicompost and Compost on Lettuce Production. Chilean Journal of Agricultural Research, 70 (4): 583-589. http://dx.doi.org/10.4067/S0718-58392010000400008
Hossain, M. B., Ryu, K. S. 2017. Effects of Organic and Inorganıc Fertilizers on Lettuce (Lactuca Sativa L.) and Soil Properties. SAARC J. Agri., 15(2): 93-102. http://dx.doi.org/10.3329/sja.v15i2.35158
Jackson, M. L. 1958. Soil chemical analysis, 38–226. New Jersey, USA: Prentice Hall Inc.
Jakhro, M. I., Shah, S. I., Zehri, M. Y., Rahujo, Z. A., Ahmed, S., Ahmed, S., Jakhro, M. A. 2017. Growth and Yield of Spinach (Spinacia oleracea L.) Under Fluctuating Levels of Organic and Inorganic Fertilizers. International Journal of Development Research, 7(2):11454-11460. Issn: 2230-9926, http://www.journalijdr.com.
Jara-Samaniego, J., Pérez-Murcia, M.D., Bustamande, M.A., Paredes, C., Pérez-Espinosa, A., Gavilanes-Terán, I., López, M., Marhuenda-Egea, F.C., Brito, H., Moral, R. 2017. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador. Plos One, 12(7): 1-17; doi: 10.1371/journal.pone.0181621
Kacar, B., ve İnal. A. 2008. Bitki analizleri (1. Baskı). Nobel Akademi Yayıncılık. No.1241 Ankara, 892s.
Kacar, B. 2009. Toprak Analizleri (3. Baskı). Nobel Akademi Yayıncılık, No. 1387. Ankara, 466 s.
Kacar, B., ve Kütük, C. 2010. Gübre Analizleri (1. Baskı). Nobel Akademi Yayıncılık, No.1497, Ankara. 400 s.
Karaman, M.R., Brohi, A.R., Müftüoğlu, N.M., Öztaş, T., Zengin, M. 2012. Sürdürülebilir Toprak Verimliliği, 3. Baskı, Koyulhisar Ziraat Odası Kültür yayınları No:1, Pelin Matbacılık, 391s. ISBN 978-605-86684-0-9
Kebede, T., Diriba, D., Boki, A. 2023. The effect of organic solid waste compost on soil properties, growth, and yield of swiss chard crop (Beta vulgaris L.). Hindavi, The Scientific World Journal, Vol. 2023, Article ID 6175746, 10p; doi:10.1155/2023/6175746
Kelley, A. J., Campbell, D. N., Wilkie, A. C., Maltais-Landry, G. 2022. Compost Composition and Application Rate Have a Greater Impact on Spinach Yield and Soil Fertility Benefits Than Feedstock Origin. Horticulturae, 8(8): 688. https://doi.org/10.3390/horticulturae8080688
Kovács, A.B., Kremper, R., Kincses, I., Leviczky, Á. 2016. Influences of different organic fertilizers on nutrients of humic sandy soil and on the growth of Spinach (Spinacia oleracea L.). Agraria Debreceniensis, 70: 23-28; doi:10.34101/actaagrar/70/1812
Kumar, V., Chopra, A.K., Srivastava, S. 2016. Assessment of Heavy Metals in Spinach (Spinacia oleracea L.) Grown in Sewage Sludge Amended Soil. Communications in Soil Science and Plant Analysis, 47(2): 221-236, 10.1080/00103624.2015.1122799
Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J. 2012. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of The Total Environment. 438:477-489. https://doi.org/10.1016/j.scitotenv.2012.08.092
Leogrande, R., Lopedota, O., Fiore, A., Vitti, C., Ventrella, D., Montemurro, F. 2013. Previous crops and organic fertilizers in lettuce: effects on yields and soil properties. Journal of Plant Nutrition, 36(13):1945–1962; doi: 10.1080/01904167.2012.754042
Lindsay, W. L., ve Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42:421–28. doi:10.2136/sssaj1978.03615995004200030009x
Liu, C.W., Sung, Y., Chen, B.C., Lai, H.Y. 2014. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.). Int. J. Environ. Res. Public Health, 11: 4427-4440; doi:10.3390/ijerph110404427
Lodha, S., Sharma, S.K., Aggrawal, R.K. 2002. Inactivation of Macrophomina phaseolina propagules during composting and effect of composts on dry root rot severity and on seed yield of clusterbean. Eur J Plant Pathol, 108(3): 253-361. http://dx.doi.org/10.1023/A:1015103315068
Machado, R. M. A., Alves-Pereira, I., Lourenço, D., Ferreira, R.M.A. 2020. Effect of organic compost and inorganic nitrogen fertigation on spinach growth, phytochemical accumulation and antioxidant activity. Heliyon, 6(9): e05085. https://doi.org/10.1016/j.heliyon.2020.e05085
Maftoun, M., Moshiri, F., Karimian, N., Ronaghi, A.M. 2004. Effects of Two Organic Wastes in Combination with Phosphorus on Growth and Chemical Composition of Spinach and Soil Properties. Journal of Plant Nutrition, 27 (9): 1635-1651. http://dx.doi.org/10.1081/PLN-200026005
Mahmoud, E., Abd El-Kader, N., Elbaroudy, A., Lamyaa, A.R. 2007. Residual effects of different organic and inorganic fertilizers on spinach (Spinacia Oleracea L.) plant grown on clay and sandy soils. J.Agric.&Env.Sci.Alex.Univ., Egypt, 6 (3): 49-65.
Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S., Shahid, M., Abid, M., Ullah, S. 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. Journal of Soil Science and Plant Nutrition, 17(1): 22-32. doi:10.4067/S0718-95162017005000002
Majaule, U., Dikinya, O., Glaser, B. 2020. Interactive effects of biochar and sewage sludge on bioavailability and plant uptake of Cu, Fe, and Zn, and spinach (Spinacia oleracea L.) yields under wastewater irrigation. Agronomy, 10(1901):7-15; doi:10.3390/agronomy10121901
Mak, T. M. W., Xiong, X., Tsang, D. C. W., Yu, I. K. M., C. S. Poon. 2020. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. BioresourceTechnology, 297(2020):122497;doi:10.1016/j.biortech.2019.122497
Melikoğlu, M., Lin, C.S.K., Webb, C. 2013. Analysing global food waste problem: pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 3(2):157-164. https://doi.org/10.2478/s13531-012-0058-5
Munesue, Y., Masui, T., Fushima, T. 2015. The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environmental Economics and Policy Studies, 17:43–77; doi 10.1007/s10018-014-0083-0
Nasreen, Z., Qazi, J.I. 2012. Lab scale composting of fruits and vegetable waste at elevated temperature and forced aeration. Pak J Zool., 44(5):1285-1290; doi: 0030-9923/2012/0005-1185 $ 8.00/0
Nathan, E.M., Starbuck, C.J., Kremer, R.J., Jett, L.W. 2005. Effects of a Food Waste-Based Soil Conditioner on Soil Properties and Plant Growth. Compost Science & Utilization, 13 (2): 116-121; doi: 10.1080/1065657X.2005.10702227
Ngwira, A.R., Nyırenda, M., Taylor, D. 2013. Toward Sustainable Agriculture: An Evaluation of Compost and Inorganic Fertilizer on Soil Nutrient Status and Productivity of Three Maize Varieties Across Multiple Sites in Malawi. Agroecology and Sustainable Food Systems, 37(8):859-881; doi: 10.1080/21683565.2013.763889
O’Connor, J., Hoang, S.A., Bradley, L., Dutta, S., Xiong, X., Tsang, D.C.W., Ramadass, K., Vinu, A., Kirkham, M.B., Bolan, N.S. 2021. A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 272: 115985. https://doi.org/10.1016/j.envpol.2020.115985
Olsen, S. R., Dean, L. A. 1965. Phosphorus. In Methods of soil analysis. Part II, ed. C. A. Black, 1035–49. Madison, Wisconsin: American Society of Agronomy Inc.
Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N. 2015. Biochar: Production, chacterization, and applications. CRC Press, Frolrida, USA, 408p.
Özkan, N., Dağlıoğlu, M., Ünser, E., Müftüoğlu, N.M. 2016. Vermikompostun ıspanak (Spinacia oleracea L.) verimi ve bazın toprak özellikleri üzerine etkisi. ÇOMÜ Zir. Fak. Derg., 4 (1): 1-5, www.researchgate.net/publication/311845432
Özsoy, G. 2001. Uludağ Üniversitesi Kampüs Alanı Topraklarının Genesisi ve Sınıflandırılması. Uludağ Üniversitesi Fen Bilimleri Enstitüsü Toprak Anabilim Dalı (Yüksek Lisans Tezi), Bursa. 120s.
Pathak, A.K., ve Christopher, K. 2019. Study of socio-economic condition and constraints faced by the farmers in adoption of Bio fertilizer in Bhadohi district (Uttar Pradesh). Journal of Pharmacognosy and Phytochemistry, 8 (2): 1916-1917. e-ıssn: 2278-4136
Poore, J., ve Nemecek, T., 2018. Reducing food’s environmental impacts through producers and consumers. Science, 360(6392): 987-992. https://doi.org/10.1126/science.aaq0216
Rajaie, M., ve Tavakoly, A.R. 2016. Effects of municipal waste compost and nitrogen fertilizer on growth and mineral composition of tomato. Int J Recycl Org Waste Agricult, 5:339–347; doi: 10.1007/s40093-016-0144-4
Reis, M., Coelho, L., Beltrão, J., Domingos, I., Moura, M. 2014. Comparative effects of inorganic and organic compost fertilization on lettuce (Lactuca sativa L.). Internatıonal Journal of Energy and Envıronment, 8 (1): 137-146. https://www.researchgate.net/publication/263854351
Reyes-Torres, M., Oviedo-Ocaňa, E., Dominguez, L., Komilis, D., Sánchez, A. 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77(1): 486-499, https://doi.org/10.1016/j.wasman.2018.04.037
Reynolds, W.D., Drury, C.F., Tan, S.,Yang, M. 2015. Temporal effects of food waste compost on soil physical quality and productivity. Can. J. Soil Sci., 95(1): 251-268; doi:10.4141/CJSS-2014-114
Robarge, W. P., Edwards, A., Johnson, B. 1983. Water and waste water analysis for nitrate via nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 14 (12):1207–15. doi: 10.1080/00103628309367444
Sall, P.M., Antoun, H., Chalifour, F.P., Beauchamp, C.J. 2019. Potential use of leachate from composted fruit and vegetable waste as fertilizer for corn. Cogent Food & Agriculture, 5: 1580180, https://doi.org/10.1080/23311932.2019.1580180
Shestha, P., Small G. E., Kay, A. 2020. Quantifying nutrient recovery efficiency and loss from compost-based urban agriculture. Plos One, 15(4):1-15. https://doi.org/10.1371/journal.pone.0230996
Sogn, T. A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V.G., Eich-Greatorex, S. 2018. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture, 7:49–58. https://doi.org/10.1007/s40093-017-0188-0
Solorzano, L. 1969. Determination of ammonia in natural waters by phenol hypochlorite method. Limnology and Oceanography, 14 (5):799–801. doi: 10.4319/lo.1969.14.5.07
Sotamenoua, J., ve Parrot, L. 2013. Sustainable urban agriculture and the adoption of composts in Cameroon. Int J Agric Sustain., 11 (3): 282-295. http://dx.doi.org/10.1080/14735903.2013.811858
Swift, R. S., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Sumner, M. E. 1996. Organic matter characterization. In Methods of soil analysis. Part 3: Chemical methods. Madison, USA: Soil Science Society America Inc, 1011–69.
Tamer, N., Başalma, D., Türkmen, C., Namlı, A. 2016. Organik toprak düzenleyicilerin toprak parametreleri ve ayçiçeği (Helianthus annuus L.) bitkisinin verim ve verim öğeleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 4 (1): 11-21, e-ISSN: 2146-8141
Tampio, E., Ervasti, S., Rintala, J. 2015. Characteristics and agronomic usability of digestates from laboratory digesters treating food waste and autoclaved food waste. Journal of Cleaner Production, 94: 86-92; doi: 10.1016/j.jclepro.2015.01.086
Thi, N.B.D., Kumar, G., Lin, C.Y. 2015. An overview of food waste management in developing countries: Current status and future perspective. J Environ Manage, 157: 220-229. doi:10.1016/j.jenvman.2015.04.022
Tümsavaş, Z. 2003. Bursa ili vertisol büyük toprak grubu topraklarının verimlilik durumlarının toprak analizleriyle belirlenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 17(2): 9-21. https://dergipark.org.tr/tr/download/article-file/153982
USDA. 2013. U.S. dept. of agriculture soil taxonomy. Accessed November 14, 2013. Erişim adresi: http://www.soils.usda.gov/tecnical/ classification/osd/index.html
Voběrková, S., Maxianová, A., Schlosserová, N., Adamcová, D., Vršanská, M., Richtera, L., Gagić, M., Zloch, J., ve Vaverková, M. D. 2020. Food waste composting – Is it really so simple as stated in scientific literature? – A case study. Science of the Total Environment, 723 (1):1-14. doi:10.1016/j.scitotenv.2020.138202
Voelklein, M.A., O’Shea, R., Jakob, A., Murphy, J.D. 2017. Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. Energy, 121(1): 185-192, https://doi.org/10.1016/j.energy.2017.01.009
Walkley, A., ve Black, L. A. 1934. An examination of the Degtjareff method for determining soils organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37:29–38.
Waqas, M., Nizami, A.S., Aburiazaiza, A.S., Barakat, M.A., Rashid, M.I., Ismail, I.M.I. 2018. Optimization of food waste compost with the use of biochar. Journal of Environmental Management, 216(1): 70-81; doi:10.1016/j.jenvman.2017.06.015
Xu, F., Li, Y., Ge, X., Yang, L., Li, Y. 2018. Anaerobic digestion of food waste – Challenges and opportunities. Bioresource Technology, 247 (1) :1047-1058, https://doi.org/10.1016/j.biortech.2017.09.020
Yağmur, B., ve Okur, B. 2018. Bazı Doğal Toprak Düzenleyicilerin Mısır (Zea Mays L.) Bitkisinin Verim Parametreleri Üzerine Etkileri. Ege Üniv. Ziraat Fakültesi Dergisi, 55(4): 471-477. Doi: 10.20289/zfdergi.419225
Yang, F., Li, Y., Han, Y., Qian, W., Li, G., Lua, W. 2019. Performance of mature compost to control gaseous emissions in kitchen waste composting. Science of the Total Environment, 657(1): 262-269. https://doi.org/10.1016/j.scitotenv.2018.12.030
Zhang, L., Lee, Y.W., Jahng, G. 2011. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102(8): 5048-5059. https://doi.org/10.1016/j.biortech.2011.01.082
Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4): 929-935. https://doi.org/10.1016/j.biortech.2006.02.039
Toplam 90 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
Türkçe
Konular
Bitki Besleme ve Toprak Verimliliği
Bölüm
Araştırma Makalesi
Yazarlar
Serhat Gürel Bursa Uludağ Üniversitesi 0000-0002-2971-8353 Türkiye
Proje Numarası
FHIZ-2022/835
Erken Görünüm Tarihi
30 Nisan 2024
Yayımlanma Tarihi
30 Nisan 2024
Gönderilme Tarihi
8 Şubat 2024
Kabul Tarihi
25 Mart 2024
Yayımlandığı Sayı
Yıl 2024 Cilt: 11 Sayı: 2
Kaynak Göster
APA
Gürel, S. (2024). Gıda Atığı Kompostu ile Kimyasal Gübre Uygulamasının Marul ve Ispanak Yetiştirilen Vertisol Grubu Toprakların Verimliliğine Etkileri. Türk Tarım Ve Doğa Bilimleri Dergisi, 11(2), 396-408. https://doi.org/10.30910/turkjans.1433803