Adsorption-desorption of glyphosate in tropical sandy soil exposed to burning or applied with agricultural waste

Yıl 2024, Cilt: 8 Sayı: 3, 469 – 482, 28.07.2024

https://doi.org/10.31127/tuje.1428763

Öz

The present study investigated glyphosate adsorption-desorption in Malaysian sandy soil exposed to burning or applied with cow dung or rice husk ash (RHA). One gram each of the adsorbents (control, burnt soil, soil + cow dung, soil + RHA) was separately and in replicate mixed with solution of 20 mL of glyphosate at different initial concentrations (0, 25, 50, 100, 150, 200, 250 and 300 mg L-1), shaken for 24 hours, centrifuged at 10, 000 rpm for 10 minutes and later the decanted supernatants were collected. Desorption study follow immediately through addition of 20 mL of 0.01 M CaCl2 solution and then treated like adsorption study. Glyphosate analysis was done using high performance liquid chromatography with fluorescence detector and isotherm data was fitted to linear, Freundlich, Langmuir and Temkin models. Freundlich best fits the adsorption of glyphosate and application of cow dung or RHA enhanced the soil affinity for glyphosate. Freundlich isotherm constant (KF) for soils treated with RHA and cow dung were 9.768 mg g-1 and 6. 751 mg g-1, respectively as compared to 3.189 mg g-1 for the control soil. However, the greatest KF value (387.238 mg g-1) was recorded by burnt Benta soil. Glyphosate adsorption by both control and treated soils was favourable (0.044 < RL < 0.3). This study suggests that adsorption occurred through physical processes involving diffusion, complexation or ligand exchange. Glyphosate desorption from soils treated with cow dung and RHA was either hysteretic or reversible. Burning this soil should be discouraged due to its effect on increasing glyphosate mobility and possible groundwater contamination. Meanwhile, agricultural waste can be applied to this soil even though it might lead to an increased glyphosate mobility but because of its potential positive effect on the soil's biological functions, the glyphosate ions are bound to be degraded.

Anahtar Kelimeler

Glyphosate, Sandy soil, Sorption, Mobility, Contamination

Kaynakça

  • Rosmiza, M. Z., Davies, W. P., Rosniza, A. C. R., Mazdi, M., Jabil, M. J., Wan-Toren, W., & CheRosmawati, C. (2014). Farmers’ participation in rice straw-utilisation in the MADA region of Kedah, Malaysia. Mediterranean Journal of Social Sciences, 5(23), 229-237. https://doi.org/10.5901/mjss.2014.v5n23p229
  • Rosmiza, M. Z., Davies, W. P., Rosniza, A. C. R., Mazdi, M., & Jabil, M. J. (2014). Farmers’ knowledge on potential uses of rice straw: an assessment in MADA and Sekinchan, Malaysia. Geografia, 10(5), 30-43.
  • John, A. (2013). Alternatives to open-field burning on paddy farms. OPTIONS Agricultural and Food Policy Studies Institute, Malaysia, 18, 1-5.
  • de Santana, H., Toni, L. R., Benetoli, L. O. D. B., Zaia, C. T., Rosa Jr, M., & Zaia, D. A. (2006). Effect in glyphosate adsorption on clays and soils heated and characterization by FT–IR spectroscopy. Geoderma, 136(3-4), 738-750. https://doi.org/10.1016/j.geoderma.2006.05.012
  • Kala, D. R., Rosenani, A. B., Fauziah, C. I., Ahmad, S. H., Radziah, O., & Rosazlin, A. (2011). Commercial organic fertilizers and their labeling in Malaysia. Malaysian Journal of Soil Science, 15, 147-157.
  • Kumar, P., Kumar, S., & Joshi, L. (2015). Socioeconomic and environmental implications of agricultural residue burning: A case study of Punjab, India. Springer Nature.
  • Husni, M. H. A., & Samsuri, A. W. (2012). Characterization of local mill rice husk charcoal and its effect on compost properties. Malaysian Journal of Soil Science, 16, 89-102.
  • Tiraieyari, N., Hamzah, A., & Samah, B. A. (2014). Organic farming and sustainable agriculture in Malaysia: organic farmers’ challenges towards adoption. Asian Social Science, 10(4), 1-7.
  • Ali, A., & Shaari, N. (2015). Mismanagement of chemical agriculture in Malaysia from legal perspective. Procedia Economics and Finance, 31, 640-650. https://doi.org/10.1016/S2212-5671(15)01152-1
  • Abdul, N. R. (2017). Glyphosate position in Malaysia market. Palma Journal, 16(1), 13-17.
  • Sprankle, P., Meggitt, W. F., & Penner, D. (1975). Rapid inactivation of glyphosate in the soil. Weed Science, 23(3), 224-228. https://doi.org/10.1017/S0043174500052917
  • Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68(1), 16-30. https://doi.org/10.1002/ps.2212
  • Skeff, W., Neumann, C., & Schulz-Bull, D. E. (2015). Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study. Marine Pollution Bulletin, 100(1), 577-585. https://doi.org/10.1016/j.marpolbul.2015.08.015
  • Van Stempvoort, D. R., Roy, J. W., Brown, S. J., & Bickerton, G. (2014). Residues of the herbicide glyphosate in riparian groundwater in urban catchments. Chemosphere, 95, 455-463. https://doi.org/10.1016/j.chemosphere.2013.09.095
  • Franz, J. E., Mao, M. K., & Sikorski, J. A. (1997). Glyphosate: A Unique Global Herbicide. American Chemical Society.
  • Virginia, A., Zamora, M., Barbera, A., Castro-Franco, M., Domenech, M., De Gerónimo, E., & Costa, J. L. (2018). Industrial agriculture and agroecological transition systems: A comparative analysis of productivity results, organic matter and glyphosate in soil. Agricultural Systems, 167, 103-112. https://doi.org/10.1016/j.agsy.2018.09.005
  • Albers, C. N., Banta, G. T., Hansen, P. E., & Jacobsen, O. S. (2009). The influence of organic matter on sorption and fate of glyphosate in soil–Comparing different soils and humic substances. Environmental Pollution, 157(10), 2865-2870. https://doi.org/10.1016/j.envpol.2009.04.004
  • Paramananthan, S. (2000). Malaysian soil taxonomy—a unified Malaysian soil classification system. Soils of Malaysia.
  • Garba, J., Samsuri, A. W., Othman, R., & Ahmad Hamdani, M. S. (2018). Adsorption-desorption and leaching potential of glyphosate and aminomethylphosphonic acid in acidic Malaysian soil amended with cow dung and rice husk ash. Environmental Monitoring and Assessment, 190, 1-15. https://doi.org/10.1007/s10661-018-7034-3
  • Piccolo, A., Celano, G., & Conte, P. (1996). Adsorption of glyphosate by humic substances. Journal of Agricultural and Food Chemistry, 44(8), 2442-2446. https://doi.org/10.1021/jf950620x
  • Garba, J., Othman, R., & Ahmad-hamdani, M. S. (2018). Simplified method for derivatization of extractable glyphosate and aminomethylphosphonic acid and their determination by high performance liquid chromatography. Environmental Research and Technology, 1(2), 19-30.
  • Gustafson, D. I. (1989). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry: An International Journal, 8(4), 339-357. https://doi.org/10.1002/etc.5620080411
  • Tessens, E., & Shamshuddin, J. (1982). Characteristics related to charges in Oxisols of Peninsular Malaysia. Pedologie, 32(1), 85-105.
  • Saleh, I. (1997). Pedological Study and Classification of Some Soils Developed on Volcanic Rocks in Jerantut District, Pahang. [Doctoral dissertation, Universiti Putra Malaysia].
  • Ngole-Jeme, V. M. (2019). Fire-induced changes in soil and implications on soil sorption capacity and remediation methods. Applied Sciences, 9(17), 3447. https://doi.org/10.3390/app9173447
  • Reynard-Callanan, J. R., Pope, G. A., Gorring, M. L., & Feng, H. (2010). Effects of high-intensity forest fires on soil clay mineralogy. Physical Geography, 31(5), 407-422. https://doi.org/10.2747/0272-3646.31.5.407
  • Ketterings, Q. M., Bigham, J. M., & Laperche, V. (2000). Changes in soil mineralogy and texture caused by slash‐and‐burn fires in Sumatra, Indonesia. Soil Science Society of America Journal, 64(3), 1108-1117. https://doi.org/10.2136/sssaj2000.6431108x
  • Araya, S. N., Meding, M., & Berhe, A. A. (2016). Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires. Soil, 2(3), 351-366. https://doi.org/10.5194/soil-2-351-2016
  • Zhelezova, A., Cederlund, H., & Stenström, J. (2017). Effect of biochar amendment and ageing on adsorption and degradation of two herbicides. Water, Air, & Soil Pollution, 228, 1-13. https://doi.org/10.1007/s11270-017-3392-7
  • Garba, J., Abd Wahid, S., Othman, R., Hamdani, M. S. A., & Sadiq, T. F. (2019). Adsorption–desorption of aminomethylphosphonic acid (AMPA) in sandy soil amended with cow dung and rice husk ash. Canadian Journal of Pesticic Management 1(1), 26-36.
  • Sposito, G. (2008). The chemistry of soils. Oxford University Press.
  • Lakshmi, U. R., Srivastava, V. C., Mall, I. D., & Lataye, D. H. (2009). Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye. Journal of Environmental Management, 90(2), 710-720. https://doi.org/10.1016/j.jenvman.2008.01.002
  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017(1), 3039817. https://doi.org/10.1155/2017/3039817
  • Tévez, H. R., & Afonso, M. D. S. (2015). pH dependence of Glyphosate adsorption on soil horizons. Boletín de la Sociedad Geológica Mexicana, 67(3), 509-516.
  • Garba, J., Samsuri, W. A., Othman, R., & Hamdani, M. S. A. (2019). Evaluation of adsorptive characteristics of cow dung and rice husk ash for removal of aqueous glyphosate and aminomethylphoshonic acid. Scientific Reports, 9(1), 17689. https://doi.org/10.1038/s41598-019-54079-0
  • De Jonge, H., De Jonge, L. W., Jacobsen, O. H., Yamaguchi, T., & Moldrup, P. (2001). Glyphosate sorption in soils of different pH and phosphorus content. Soil Science, 166(4), 230-238.
  • Maurya, N. S., & Mittal, A. K. (2010). Biosorptive color removal: applicability of equilibrium isotherm models. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 14(1), 25-36. https://doi.org/10.1061/(ASCE)1090-025X(2010)14:1(25)
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013
  • Temkin, M. I. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochimica URSS, 12, 327-356.
  • Cheah, U. B., Kirkwood, R. C., & Lum, K. Y. (1997). Adsorption, desorption and mobility of four commonly used pesticides in Malaysian agricultural soils. Pesticide Science, 50(1), 53-63. https://doi.org/10.1002/(SICI)1096-9063(199705)50:1<53::AID-PS558>3.0.CO;2-P
  • Ismail, B. S., Zaifah, A. K., Khairiah, J., & Nashriyah, M. (2002). Adsorption-desorption, mobility and degradation of 14 C-glyphosate in two soil series. Jurnal Sains Nuklear Malaysia, 20(1-2), 17-29.
  • Mamy, L., & Barriuso, E. (2007). Desorption and time‐dependent sorption of herbicides in soils. European Journal of Soil Science, 58(1), 174-187. https://doi.org/10.1111/j.1365-2389.2006.00822.x
  • Rampoldi, E. A., Hang, S., & Barriuso, E. (2014). Carbon‐14‐glyphosate behavior in relationship to pedoclimatic conditions and crop sequence. Journal of Environmental Quality, 43(2), 558-567. https://doi.org/10.2134/jeq2013.09.0362
  • Fenoll, J., Vela, N., Navarro, G., Pérez-Lucas, G., & Navarro, S. (2014). Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil. Science of the Total Environment, 493, 124-132. https://doi.org/10.1016/j.scitotenv.2014.05.098

Yıl 2024, Cilt: 8 Sayı: 3, 469 – 482, 28.07.2024

https://doi.org/10.31127/tuje.1428763

Öz

Kaynakça

  • Rosmiza, M. Z., Davies, W. P., Rosniza, A. C. R., Mazdi, M., Jabil, M. J., Wan-Toren, W., & CheRosmawati, C. (2014). Farmers’ participation in rice straw-utilisation in the MADA region of Kedah, Malaysia. Mediterranean Journal of Social Sciences, 5(23), 229-237. https://doi.org/10.5901/mjss.2014.v5n23p229
  • Rosmiza, M. Z., Davies, W. P., Rosniza, A. C. R., Mazdi, M., & Jabil, M. J. (2014). Farmers’ knowledge on potential uses of rice straw: an assessment in MADA and Sekinchan, Malaysia. Geografia, 10(5), 30-43.
  • John, A. (2013). Alternatives to open-field burning on paddy farms. OPTIONS Agricultural and Food Policy Studies Institute, Malaysia, 18, 1-5.
  • de Santana, H., Toni, L. R., Benetoli, L. O. D. B., Zaia, C. T., Rosa Jr, M., & Zaia, D. A. (2006). Effect in glyphosate adsorption on clays and soils heated and characterization by FT–IR spectroscopy. Geoderma, 136(3-4), 738-750. https://doi.org/10.1016/j.geoderma.2006.05.012
  • Kala, D. R., Rosenani, A. B., Fauziah, C. I., Ahmad, S. H., Radziah, O., & Rosazlin, A. (2011). Commercial organic fertilizers and their labeling in Malaysia. Malaysian Journal of Soil Science, 15, 147-157.
  • Kumar, P., Kumar, S., & Joshi, L. (2015). Socioeconomic and environmental implications of agricultural residue burning: A case study of Punjab, India. Springer Nature.
  • Husni, M. H. A., & Samsuri, A. W. (2012). Characterization of local mill rice husk charcoal and its effect on compost properties. Malaysian Journal of Soil Science, 16, 89-102.
  • Tiraieyari, N., Hamzah, A., & Samah, B. A. (2014). Organic farming and sustainable agriculture in Malaysia: organic farmers’ challenges towards adoption. Asian Social Science, 10(4), 1-7.
  • Ali, A., & Shaari, N. (2015). Mismanagement of chemical agriculture in Malaysia from legal perspective. Procedia Economics and Finance, 31, 640-650. https://doi.org/10.1016/S2212-5671(15)01152-1
  • Abdul, N. R. (2017). Glyphosate position in Malaysia market. Palma Journal, 16(1), 13-17.
  • Sprankle, P., Meggitt, W. F., & Penner, D. (1975). Rapid inactivation of glyphosate in the soil. Weed Science, 23(3), 224-228. https://doi.org/10.1017/S0043174500052917
  • Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68(1), 16-30. https://doi.org/10.1002/ps.2212
  • Skeff, W., Neumann, C., & Schulz-Bull, D. E. (2015). Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study. Marine Pollution Bulletin, 100(1), 577-585. https://doi.org/10.1016/j.marpolbul.2015.08.015
  • Van Stempvoort, D. R., Roy, J. W., Brown, S. J., & Bickerton, G. (2014). Residues of the herbicide glyphosate in riparian groundwater in urban catchments. Chemosphere, 95, 455-463. https://doi.org/10.1016/j.chemosphere.2013.09.095
  • Franz, J. E., Mao, M. K., & Sikorski, J. A. (1997). Glyphosate: A Unique Global Herbicide. American Chemical Society.
  • Virginia, A., Zamora, M., Barbera, A., Castro-Franco, M., Domenech, M., De Gerónimo, E., & Costa, J. L. (2018). Industrial agriculture and agroecological transition systems: A comparative analysis of productivity results, organic matter and glyphosate in soil. Agricultural Systems, 167, 103-112. https://doi.org/10.1016/j.agsy.2018.09.005
  • Albers, C. N., Banta, G. T., Hansen, P. E., & Jacobsen, O. S. (2009). The influence of organic matter on sorption and fate of glyphosate in soil–Comparing different soils and humic substances. Environmental Pollution, 157(10), 2865-2870. https://doi.org/10.1016/j.envpol.2009.04.004
  • Paramananthan, S. (2000). Malaysian soil taxonomy—a unified Malaysian soil classification system. Soils of Malaysia.
  • Garba, J., Samsuri, A. W., Othman, R., & Ahmad Hamdani, M. S. (2018). Adsorption-desorption and leaching potential of glyphosate and aminomethylphosphonic acid in acidic Malaysian soil amended with cow dung and rice husk ash. Environmental Monitoring and Assessment, 190, 1-15. https://doi.org/10.1007/s10661-018-7034-3
  • Piccolo, A., Celano, G., & Conte, P. (1996). Adsorption of glyphosate by humic substances. Journal of Agricultural and Food Chemistry, 44(8), 2442-2446. https://doi.org/10.1021/jf950620x
  • Garba, J., Othman, R., & Ahmad-hamdani, M. S. (2018). Simplified method for derivatization of extractable glyphosate and aminomethylphosphonic acid and their determination by high performance liquid chromatography. Environmental Research and Technology, 1(2), 19-30.
  • Gustafson, D. I. (1989). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry: An International Journal, 8(4), 339-357. https://doi.org/10.1002/etc.5620080411
  • Tessens, E., & Shamshuddin, J. (1982). Characteristics related to charges in Oxisols of Peninsular Malaysia. Pedologie, 32(1), 85-105.
  • Saleh, I. (1997). Pedological Study and Classification of Some Soils Developed on Volcanic Rocks in Jerantut District, Pahang. [Doctoral dissertation, Universiti Putra Malaysia].
  • Ngole-Jeme, V. M. (2019). Fire-induced changes in soil and implications on soil sorption capacity and remediation methods. Applied Sciences, 9(17), 3447. https://doi.org/10.3390/app9173447
  • Reynard-Callanan, J. R., Pope, G. A., Gorring, M. L., & Feng, H. (2010). Effects of high-intensity forest fires on soil clay mineralogy. Physical Geography, 31(5), 407-422. https://doi.org/10.2747/0272-3646.31.5.407
  • Ketterings, Q. M., Bigham, J. M., & Laperche, V. (2000). Changes in soil mineralogy and texture caused by slash‐and‐burn fires in Sumatra, Indonesia. Soil Science Society of America Journal, 64(3), 1108-1117. https://doi.org/10.2136/sssaj2000.6431108x
  • Araya, S. N., Meding, M., & Berhe, A. A. (2016). Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires. Soil, 2(3), 351-366. https://doi.org/10.5194/soil-2-351-2016
  • Zhelezova, A., Cederlund, H., & Stenström, J. (2017). Effect of biochar amendment and ageing on adsorption and degradation of two herbicides. Water, Air, & Soil Pollution, 228, 1-13. https://doi.org/10.1007/s11270-017-3392-7
  • Garba, J., Abd Wahid, S., Othman, R., Hamdani, M. S. A., & Sadiq, T. F. (2019). Adsorption–desorption of aminomethylphosphonic acid (AMPA) in sandy soil amended with cow dung and rice husk ash. Canadian Journal of Pesticic Management 1(1), 26-36.
  • Sposito, G. (2008). The chemistry of soils. Oxford University Press.
  • Lakshmi, U. R., Srivastava, V. C., Mall, I. D., & Lataye, D. H. (2009). Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye. Journal of Environmental Management, 90(2), 710-720. https://doi.org/10.1016/j.jenvman.2008.01.002
  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017(1), 3039817. https://doi.org/10.1155/2017/3039817
  • Tévez, H. R., & Afonso, M. D. S. (2015). pH dependence of Glyphosate adsorption on soil horizons. Boletín de la Sociedad Geológica Mexicana, 67(3), 509-516.
  • Garba, J., Samsuri, W. A., Othman, R., & Hamdani, M. S. A. (2019). Evaluation of adsorptive characteristics of cow dung and rice husk ash for removal of aqueous glyphosate and aminomethylphoshonic acid. Scientific Reports, 9(1), 17689. https://doi.org/10.1038/s41598-019-54079-0
  • De Jonge, H., De Jonge, L. W., Jacobsen, O. H., Yamaguchi, T., & Moldrup, P. (2001). Glyphosate sorption in soils of different pH and phosphorus content. Soil Science, 166(4), 230-238.
  • Maurya, N. S., & Mittal, A. K. (2010). Biosorptive color removal: applicability of equilibrium isotherm models. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 14(1), 25-36. https://doi.org/10.1061/(ASCE)1090-025X(2010)14:1(25)
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013
  • Temkin, M. I. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochimica URSS, 12, 327-356.
  • Cheah, U. B., Kirkwood, R. C., & Lum, K. Y. (1997). Adsorption, desorption and mobility of four commonly used pesticides in Malaysian agricultural soils. Pesticide Science, 50(1), 53-63. https://doi.org/10.1002/(SICI)1096-9063(199705)50:1<53::AID-PS558>3.0.CO;2-P
  • Ismail, B. S., Zaifah, A. K., Khairiah, J., & Nashriyah, M. (2002). Adsorption-desorption, mobility and degradation of 14 C-glyphosate in two soil series. Jurnal Sains Nuklear Malaysia, 20(1-2), 17-29.
  • Mamy, L., & Barriuso, E. (2007). Desorption and time‐dependent sorption of herbicides in soils. European Journal of Soil Science, 58(1), 174-187. https://doi.org/10.1111/j.1365-2389.2006.00822.x
  • Rampoldi, E. A., Hang, S., & Barriuso, E. (2014). Carbon‐14‐glyphosate behavior in relationship to pedoclimatic conditions and crop sequence. Journal of Environmental Quality, 43(2), 558-567. https://doi.org/10.2134/jeq2013.09.0362
  • Fenoll, J., Vela, N., Navarro, G., Pérez-Lucas, G., & Navarro, S. (2014). Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil. Science of the Total Environment, 493, 124-132. https://doi.org/10.1016/j.scitotenv.2014.05.098

Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Kirliliği ve Kontrolü
BölümArticles
Yazarlar

Jamilu Garba Bir kuruma bağlı değildir 0000-0003-2229-9536 Nigeria

Samsuri Abd Wahid Bir kuruma bağlı değildir 0000-0002-5450-0604 Malaysia

Muhammad Saıful Ahmad Hamdanı Bir kuruma bağlı değildir 0000-0002-6233-5143 Malaysia

Tariq Faruq Sadiq Bir kuruma bağlı değildir 0000-0002-8636-3034 Iraq

Erken Görünüm Tarihi5 Temmuz 2024
Yayımlanma Tarihi28 Temmuz 2024
Gönderilme Tarihi30 Ocak 2024
Kabul Tarihi21 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 3

Kaynak Göster

APAGarba, J., Abd Wahid, S., Ahmad Hamdanı, M. S., Faruq Sadiq, T. (2024). Adsorption-desorption of glyphosate in tropical sandy soil exposed to burning or applied with agricultural waste. Turkish Journal of Engineering, 8(3), 469-482. https://doi.org/10.31127/tuje.1428763
AMAGarba J, Abd Wahid S, Ahmad Hamdanı MS, Faruq Sadiq T. Adsorption-desorption of glyphosate in tropical sandy soil exposed to burning or applied with agricultural waste. TUJE. Temmuz 2024;8(3):469-482. doi:10.31127/tuje.1428763
ChicagoGarba, Jamilu, Samsuri Abd Wahid, Muhammad Saıful Ahmad Hamdanı, ve Tariq Faruq Sadiq. “Adsorption-Desorption of Glyphosate in Tropical Sandy Soil Exposed to Burning or Applied With Agricultural Waste”. Turkish Journal of Engineering 8, sy. 3 (Temmuz 2024): 469-82. https://doi.org/10.31127/tuje.1428763.
EndNoteGarba J, Abd Wahid S, Ahmad Hamdanı MS, Faruq Sadiq T (01 Temmuz 2024) Adsorption-desorption of glyphosate in tropical sandy soil exposed to burning or applied with agricultural waste. Turkish Journal of Engineering 8 3 469–482.
IEEEJ. Garba, S. Abd Wahid, M. S. Ahmad Hamdanı, ve T. Faruq Sadiq, “Adsorption-desorption of glyphosate in tropical sandy soil exposed to burning or applied with agricultural waste”, TUJE, c. 8, sy. 3, ss. 469–482, 2024, doi: 10.31127/tuje.1428763.
ISNADGarba, Jamilu vd. “Adsorption-Desorption of Glyphosate in Tropical Sandy Soil Exposed to Burning or Applied With Agricultural Waste”. Turkish Journal of Engineering 8/3 (Temmuz 2024), 469-482. https://doi.org/10.31127/tuje.1428763.
JAMAGarba J, Abd Wahid S, Ahmad Hamdanı MS, Faruq Sadiq T. Adsorption-desorption of glyphosate in tropical sandy soil exposed to burning or applied with agricultural waste. TUJE. 2024;8:469–482.
MLAGarba, Jamilu vd. “Adsorption-Desorption of Glyphosate in Tropical Sandy Soil Exposed to Burning or Applied With Agricultural Waste”. Turkish Journal of Engineering, c. 8, sy. 3, 2024, ss. 469-82, doi:10.31127/tuje.1428763.
VancouverGarba J, Abd Wahid S, Ahmad Hamdanı MS, Faruq Sadiq T. Adsorption-desorption of glyphosate in tropical sandy soil exposed to burning or applied with agricultural waste. TUJE. 2024;8(3):469-82.

Download or read online: Click here