Investment technique for ensuring energy supply continuity in ring grids

Yıl 2024, Cilt: 8 Sayı: 2, 186 – 195, 30.04.2024

https://doi.org/10.31127/tuje.1357643

Öz

The importance of energy supply for both end-users and electricity distribution entities, as well as the need for reliable energy quality parameters, is significant. This study delves into scenarios where these parameters cannot be met, outlining formulas for calculating compensation and other financial obligations that distribution companies may incur. The study highlights various types of interruptions that disrupt energy supply continuity within electricity distribution networks and elucidates their impacts on the network infrastructure. The establishment of alternative energy sources and the enhancement of the network infrastructure through coupling are recommended to mitigate the consequences of these interruptions. Investments in alternative energy sources and network improvements are compared to penalty amounts incurred when the quality parameters for energy supply continuity cannot be met. The F13/F14 Ring Network, a proposed coupling approach that can improve energy supply, is identified and its installation costs are compared with the existing conditions. Additionally, the magnitude of fines that distribution companies may potentially face is estimated. As a result, a comprehensive cost-benefit analysis is conducted, integrating these comparisons to evaluate the economic sustainability and advantages associated with the proposed F13/F14 Ring Network coupling method.

Anahtar Kelimeler

Continuity of electricity supply, Alternative electricity sources, Ring grid, Electricity distribution network, Busbar systems

Kaynakça

  • Bollen, M. H., & Verde, P. (2008). A framework for regulation of rms voltage and short-duration under and overvoltages. IEEE Transactions on Power Delivery, 23(4), 2105-2112. https://doi.org/10.1109/TPWRD.2008.919191
  • Bollen, M., Beyer, Y., Styvactakis, E., Trhulj, J., Vailati, R., & Friedl, W. (2012). A European benchmarking of voltage quality regulation. In 2012 IEEE 15th International Conference on Harmonics and Quality of Power, 45-52. https://doi.org/10.1109/ICHQP.2012.6381171
  • Etherden, N., & Bollen, M. H. (2011). Increasing the hosting capacity of distribution networks by curtailment of renewable energy resources. In 2011 IEEE Trondheim PowerTech, 1-7. https://doi.org/10.1109/PTC.2011.6019292
  • Hossain, E., Tür, M. R., Padmanaban, S., Ay, S., & Khan, I. (2018). Analysis and mitigation of power quality issues in distributed generation systems using custom power devices. IEEE Access, 6, 16816-16833. https://doi.org/10.1109/ACCESS.2018.2814981
  • Mondol, M. H., Tür, M. R., Biswas, S. P., Hosain, M. K., Shuvo, S., & Hossain, E. (2020). Compact three phase multilevel inverter for low and medium power photovoltaic systems. IEEE Access, 8, 60824-60837. https://doi.org/10.1109/ACCESS.2020.2983131
  • Tür, M. R. (2022). Energy supply security and artificial intelligence applications. Insight Turkey, 24(3), 213-234. https://doi.org/10.25253/99.2022243.13
  • Brekke, K., Esteves, J., Bollen, M., Schiavo, L. L., Villa, F., Reti, G., … & Kolessar, R. (2009). The CEER and the 4 th Benchmarking Report on Quality of Electricity Supply. In 2009 International Conference on Power Engineering, Energy and Electrical Drives, 291-296. https://doi.org/10.1109/POWERENG.2009.4915263
  • Tur, M. R., Shobole, A., Wadi, M., & Bayindir, R. (2017). Valuation of reliability assessment for power systems in terms of distribution system, A case study. In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 1114-1118. https://doi.org/10.1109/ICRERA.2017.8191227
  • Wadi, M., Baysal, M., Shobole, A., & Tur, M. R. (2018). Reliability evaluation in smart grids via modified Monte Carlo simulation method. In 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 841-845. https://doi.org/10.1109/ICRERA.2018.8566982
  • Baggini, A. (2008). Handbook of power quality. John Wiley & Sons.
  • Allan, R. N. (2013). Reliability evaluation of power systems. Springer Science & Business Media.
  • Rosiński, A., & Dąbrowski, T. (2013). Modelling reliability of uninterruptible power supply units. Eksploatacja i Niezawodność, 15(4), 409-413.
  • Pa´s, J. (2015). Operation of electronic transportation systems. University of Technology and Humanities: Radom, Poland.
  • Rosinski, A.; Dabrowski, T. Modelling reliability of uninterruptible power supply units. Ekspolatacja Niezawodn. Maint. Reliab. 2013, 15, 409–413
  • Dempster, A. P. (2008). Upper and lower probabilities induced by a multivalued mapping. In Classic Works of the Dempster-Shafer Theory of Belief Functions, 57-72. https://doi.org/10.1007/978-3-540-44792-4_3
  • Shafer, G. (1976). A mathematical theory of evidence (Vol. 42). Princeton University Press.
  • Pieczynski, W. (2000). Unsupervised Dempster-Shafer fusion of dependent sensors. In 4th IEEE Southwest Symposium on Image Analysis and Interpretation, 247-251. https://doi.org/10.1109/IAI.2000.839609
  • Weng, N., Li, I. H., & Vespa, L. (2011). Information quality model and optimization for 802.15. 4-based wireless sensor networks. Journal of Network and Computer Applications, 34(6), 1773-1783. https://doi.org/10.1016/j.jnca.2010.12.013
  • Olaisen, J. L. (1990). Information quality factors and the cognitive authority of electrinic information. Bedriftsøkonomisk institutt.
  • Zhu, H., Madnick, S. E., Lee, Y. W., & Wang, R. Y. (2014). Data and information quality research: Its evolution and future. Computing Handbook: Data and Information Quality Research: Its Evolution and Future, 3.
  • Stawowy, M. (2015). Comparison of uncertainty models of impact of teleinformation devices reliability on information quality. In European Safety and Reliability Conference, 2329-2333.
  • Stawowy, M., & Dziula, P. (2015). Comparison of uncertainty multilayer models of impact of teleinformation devices reliability on information quality. Proceedings of the European Safety and Reliability Conference, 2685-2691.
  • Stawowy, M., Perlicki, K., & Sumiła, M. (2017). Comparison of uncertainty multilevel models to ensure ITS services. In 27th European Safety and Reliability Conference, 2647-2652.
  • Tur, M. R., Ay, S., Erduman, A., Shobole, A., Baysal, M., & Wadi, M. (2017). Impact of demand side management on spinning reserve requirements designation. International Journal of Renewable Energy Research, 7(2), 946-953.
  • Tur, M. R., Shobole, A., Wadi, M., & Bayindir, R. (2017, November). Valuation of reliability assessment for power systems in terms of distribution system, A case study. In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 1114-1118. https://doi.org/10.1109/ICRERA.2017.8191227

Yıl 2024, Cilt: 8 Sayı: 2, 186 – 195, 30.04.2024

https://doi.org/10.31127/tuje.1357643

Öz

Kaynakça

  • Bollen, M. H., & Verde, P. (2008). A framework for regulation of rms voltage and short-duration under and overvoltages. IEEE Transactions on Power Delivery, 23(4), 2105-2112. https://doi.org/10.1109/TPWRD.2008.919191
  • Bollen, M., Beyer, Y., Styvactakis, E., Trhulj, J., Vailati, R., & Friedl, W. (2012). A European benchmarking of voltage quality regulation. In 2012 IEEE 15th International Conference on Harmonics and Quality of Power, 45-52. https://doi.org/10.1109/ICHQP.2012.6381171
  • Etherden, N., & Bollen, M. H. (2011). Increasing the hosting capacity of distribution networks by curtailment of renewable energy resources. In 2011 IEEE Trondheim PowerTech, 1-7. https://doi.org/10.1109/PTC.2011.6019292
  • Hossain, E., Tür, M. R., Padmanaban, S., Ay, S., & Khan, I. (2018). Analysis and mitigation of power quality issues in distributed generation systems using custom power devices. IEEE Access, 6, 16816-16833. https://doi.org/10.1109/ACCESS.2018.2814981
  • Mondol, M. H., Tür, M. R., Biswas, S. P., Hosain, M. K., Shuvo, S., & Hossain, E. (2020). Compact three phase multilevel inverter for low and medium power photovoltaic systems. IEEE Access, 8, 60824-60837. https://doi.org/10.1109/ACCESS.2020.2983131
  • Tür, M. R. (2022). Energy supply security and artificial intelligence applications. Insight Turkey, 24(3), 213-234. https://doi.org/10.25253/99.2022243.13
  • Brekke, K., Esteves, J., Bollen, M., Schiavo, L. L., Villa, F., Reti, G., … & Kolessar, R. (2009). The CEER and the 4 th Benchmarking Report on Quality of Electricity Supply. In 2009 International Conference on Power Engineering, Energy and Electrical Drives, 291-296. https://doi.org/10.1109/POWERENG.2009.4915263
  • Tur, M. R., Shobole, A., Wadi, M., & Bayindir, R. (2017). Valuation of reliability assessment for power systems in terms of distribution system, A case study. In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 1114-1118. https://doi.org/10.1109/ICRERA.2017.8191227
  • Wadi, M., Baysal, M., Shobole, A., & Tur, M. R. (2018). Reliability evaluation in smart grids via modified Monte Carlo simulation method. In 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), 841-845. https://doi.org/10.1109/ICRERA.2018.8566982
  • Baggini, A. (2008). Handbook of power quality. John Wiley & Sons.
  • Allan, R. N. (2013). Reliability evaluation of power systems. Springer Science & Business Media.
  • Rosiński, A., & Dąbrowski, T. (2013). Modelling reliability of uninterruptible power supply units. Eksploatacja i Niezawodność, 15(4), 409-413.
  • Pa´s, J. (2015). Operation of electronic transportation systems. University of Technology and Humanities: Radom, Poland.
  • Rosinski, A.; Dabrowski, T. Modelling reliability of uninterruptible power supply units. Ekspolatacja Niezawodn. Maint. Reliab. 2013, 15, 409–413
  • Dempster, A. P. (2008). Upper and lower probabilities induced by a multivalued mapping. In Classic Works of the Dempster-Shafer Theory of Belief Functions, 57-72. https://doi.org/10.1007/978-3-540-44792-4_3
  • Shafer, G. (1976). A mathematical theory of evidence (Vol. 42). Princeton University Press.
  • Pieczynski, W. (2000). Unsupervised Dempster-Shafer fusion of dependent sensors. In 4th IEEE Southwest Symposium on Image Analysis and Interpretation, 247-251. https://doi.org/10.1109/IAI.2000.839609
  • Weng, N., Li, I. H., & Vespa, L. (2011). Information quality model and optimization for 802.15. 4-based wireless sensor networks. Journal of Network and Computer Applications, 34(6), 1773-1783. https://doi.org/10.1016/j.jnca.2010.12.013
  • Olaisen, J. L. (1990). Information quality factors and the cognitive authority of electrinic information. Bedriftsøkonomisk institutt.
  • Zhu, H., Madnick, S. E., Lee, Y. W., & Wang, R. Y. (2014). Data and information quality research: Its evolution and future. Computing Handbook: Data and Information Quality Research: Its Evolution and Future, 3.
  • Stawowy, M. (2015). Comparison of uncertainty models of impact of teleinformation devices reliability on information quality. In European Safety and Reliability Conference, 2329-2333.
  • Stawowy, M., & Dziula, P. (2015). Comparison of uncertainty multilayer models of impact of teleinformation devices reliability on information quality. Proceedings of the European Safety and Reliability Conference, 2685-2691.
  • Stawowy, M., Perlicki, K., & Sumiła, M. (2017). Comparison of uncertainty multilevel models to ensure ITS services. In 27th European Safety and Reliability Conference, 2647-2652.
  • Tur, M. R., Ay, S., Erduman, A., Shobole, A., Baysal, M., & Wadi, M. (2017). Impact of demand side management on spinning reserve requirements designation. International Journal of Renewable Energy Research, 7(2), 946-953.
  • Tur, M. R., Shobole, A., Wadi, M., & Bayindir, R. (2017, November). Valuation of reliability assessment for power systems in terms of distribution system, A case study. In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), 1114-1118. https://doi.org/10.1109/ICRERA.2017.8191227

Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ağ Mühendisliği
BölümArticles
Yazarlar

Rojin Temiz BATMAN ÜNİVERSİTESİ 0009-0001-8549-0920 Türkiye

Mehmet Rida Tür BATMAN ÜNİVERSİTESİ 0000-0001-5688-4624 Türkiye

Erken Görünüm Tarihi7 Nisan 2024
Yayımlanma Tarihi30 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 2

Kaynak Göster

APATemiz, R., & Tür, M. R. (2024). Investment technique for ensuring energy supply continuity in ring grids. Turkish Journal of Engineering, 8(2), 186-195. https://doi.org/10.31127/tuje.1357643
AMATemiz R, Tür MR. Investment technique for ensuring energy supply continuity in ring grids. TUJE. Nisan 2024;8(2):186-195. doi:10.31127/tuje.1357643
ChicagoTemiz, Rojin, ve Mehmet Rida Tür. “Investment Technique for Ensuring Energy Supply Continuity in Ring Grids”. Turkish Journal of Engineering 8, sy. 2 (Nisan 2024): 186-95. https://doi.org/10.31127/tuje.1357643.
EndNoteTemiz R, Tür MR (01 Nisan 2024) Investment technique for ensuring energy supply continuity in ring grids. Turkish Journal of Engineering 8 2 186–195.
IEEER. Temiz ve M. R. Tür, “Investment technique for ensuring energy supply continuity in ring grids”, TUJE, c. 8, sy. 2, ss. 186–195, 2024, doi: 10.31127/tuje.1357643.
ISNADTemiz, Rojin – Tür, Mehmet Rida. “Investment Technique for Ensuring Energy Supply Continuity in Ring Grids”. Turkish Journal of Engineering 8/2 (Nisan 2024), 186-195. https://doi.org/10.31127/tuje.1357643.
JAMATemiz R, Tür MR. Investment technique for ensuring energy supply continuity in ring grids. TUJE. 2024;8:186–195.
MLATemiz, Rojin ve Mehmet Rida Tür. “Investment Technique for Ensuring Energy Supply Continuity in Ring Grids”. Turkish Journal of Engineering, c. 8, sy. 2, 2024, ss. 186-95, doi:10.31127/tuje.1357643.
VancouverTemiz R, Tür MR. Investment technique for ensuring energy supply continuity in ring grids. TUJE. 2024;8(2):186-95.

Download or read online: Click here