Biological control of pathogenic fungi using Pseudomonas brassicacearum isolated from Aronia × prunifolia (Marshall) Rehder rootsSkip to content
Biological control of pathogenic fungi using Pseudomonas brassicacearum isolated from Aronia × prunifolia (Marshall) Rehder roots
Yıl 2024, Cilt: 11 Sayı: 3, 421 – 434, 29.08.2024
Luau Burhan Mustafa , Ahmed Ismael Naqee Al-bayatı , Dunya Albayati , İbrahim Özkoç
https://doi.org/10.21448/ijsm.1385251
Öz
Endophytic bacteria, which are the subject of this study, serve as natural antifungal agents in the struggle against fungal infections, offering an eco-friendly alternative to chemical fungicides. So, it was aimed to determine the antifungal capacities of endophytic bacteria from Aronia ×prunifolia roots in the study. 25 endophytic bacteria were isolated, and their ability to act as biocontrol agents was evaluated by measuring fungal growth inhibition and chemical properties. Later, bacteria that showed a positive effect were identified through 16S gene sequencing. The results showed that the LB2 bacteria had the greatest ability to inhibit the selected fungi and the biochemical tests showed that the bacteria were Gram-negative, did not form spores, their colonies were well defined, and they could break down starch and gelatin, which was later diagnosed as Pseudomonas brassicacearum according to phylogenetic relationships. This study is the first report on which P. brassicacearum was isolated from A. ×prunifolia roots for the first time. These findings contribute to our understanding of the potential of endophytic bacteria, particularly P. brassicacearum, as natural antifungal agents in plant and human protection, offering a promising and sustainable approach to combat fungal infections while reducing the use of chemical fungicides.
Achouak, W., Sutra, L., Heulin, T., Meyer, J.M., Fromin, N., Degraeve, S., … & Gardan, L. (2000). Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. International Journal of Systematic and Evolutionary Microbiology, 50(1), 9-18. https://doi.org/10.1099/00207713-50-1-9
Adeleke, B.S., & Babalola, O.O. (2022). Meta-omics of endophytic microbes in agricultural biotechnology. Biocatalysis and Agricultural Biotechnology, 42, 102332. https://doi.org/10.1016/j.bcab.2022.102332
Afsharmanesh, H., Ahmadzadeh, M., & Sharifi-Tehrani, A. (2006). Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads. Communications in Agricultural and Applied Biological Sciences, 71(3 Pt B), 1021-1029.
Akdemir, S., Torçuk, A.I., & Uysal Seçkin, G. (2023). Determination of Quality Parameters of Aronia Melanocarpa During Cold Storage. Erwerbs Obstbau, 1 7. https://doi.org/10.1007/s10341-023-00845-4
Alsohiby, F.A.A., Yahya, S., & Humaid, A.A. (2016). Screening of soil isolates of bacteria for antagonistic activity against plant pathogenic fungi. PSM Microbiology, 1(1), 5-9.
Anand, U., Pal, T., Yadav, N., Singh, V.K., Tripathi, V., Choudhary, K.K., … & Singh, A.K. (2023). Current scenario and future prospects of endophytic microbes: promising candidates for abiotic and biotic stress management for agricultural and environmental sustainability. Microbial Ecology, 1-32. https://doi.org/10.1007/s00248-023-02190-1
Bahmani, K., Hasanzadeh, N., Harighi, B., & Marefat, A. (2021). Isolation and identification of endophytic bacteria from potato tissues and their effects as biological control agents against bacterial wilt. Physiological and Molecular Plant Pathology, 116, 101692. https://doi.org/10.1016/j.pmpp.2021.101692
Berg, G., & Hallmann, J. (2006). Control of plant pathogenic fungi with bacterial endophytes. Microbial Root Endophytes, 53-69. https://doi.org/10.1007/3-540-33526-9
Berg, G., Krechel, A., Ditz, M., Sikora, R.A., Ulrich, A., & Hallmann, J. (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51(2), 215-229. https://doi.org/10.1016/j.femsec.2004.08.006
Berry, C., Fernando, W.D., Loewen, P.C., & De Kievit, T.R. (2010). Lipopeptides are essential for Pseudomonas sp. DF41 biocontrol of Sclerotinia sclerotiorum. Biological Control, 55(3), 211-218. https://doi.org/10.1016/j.biocontrol.2010.09.011
Bhaskar, P.V., Grossart, H.P., Bhosle, N.B., & Simon, M. (2005). Production of macroaggregates from dissolved exopolymeric substances (EPS) of bacterial and diatom origin. FEMS Microbiology Ecology, 53(2), 255 264. https://doi.org/10.1016/j.femsec.2004.12.013
Boonman, N., Chutrtong, J., Wanna, C., Boonsilp, S., & Chunchob, S. (2023). Antimicrobial activities of endophytic bacteria isolated from Ageratum conyzoides Linn. Biodiversitas Journal of Biological Diversity, 24(4). https://doi.org/10.13057/biodiv/d240405
Cao, L., Qiu, Z., You, J., Tan, H., & Zhou, S. (2005). Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiology Letters, 247(2), 147 152. https://doi.org/10.1016/j.femsle.2005.05.006
Caulier, S., Gillis, A., Colau, G., Licciardi, F., Liépin, M., Desoignies, N., … & Bragard, C. (2018). Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology, 9, 143. https://doi.org/10.3389/fmicb.2018.00143
Celka, Z., & Szkudlarz, P. (2010). Spontaneous occurrence and dispersion of Aronia x prunifolia [Marshall] rehder [Rosaceae] in Poland on the example of the'Bagna'bog complex near Chlebowo [western Poland]. Acta Societatis Botanicorum Poloniae, 79(1), 37-42.
Chen, C., Bauske, E.M., Musson, G., Rodriguezkabana, R., & Kloepper, J.W. (1995). Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 5(1), 83-91. https://doi.org/10.1006/bcon.1995.1009
Cho, S.J., Park, S.R., Kim, M.K., Lim, W.J., Ryu, S.K., An, C.L., … & Yun, H.D. (2002). Endophytic Bacillus sp. isolated from the interior of balloon flower root. Bioscience, biotechnology, and biochemistry, 66(6), 1270-1275. https://doi.org/10.1271/bbb.66.1270
Chung, B.S., Aslam, Z., Kim, S.W., Kim, G.G., Kang, H.S., Ahn, J.W., & Chung, Y.R. (2008). A bacterial endophyte, Pseudomonas brassicacearum YC5480, isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. The Plant Pathology Journal, 24(4), 461-468. https://doi.org/10.5423/PPJ.2008.24.4.461
Cipriano, M.A.P., Freitas-Iório, R.D.P., Dimitrov, M.R., de Andrade, S.A.L., Kuramae, E.E., & Silveira, A.P.D.D. (2021). Plant-growth endophytic bacteria improve nutrient use efficiency and modulate foliar N-metabolites in sugarcane seedling. Microorganisms, 9(3), 479. https://doi.org/10.3390/microorganisms9030479
Correa, P.A., Nosheen, A., Yasmin, H., & Ansari, M.J. (2022). Antifungal Antibiotics Biosynthesized by Major PGPR. In Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion (pp. 199-247). Cham: Springer International Publishing. https://doi.org/10.36721/PJPS.2023.36.3.SP.927-934.1
Crawford, J.M., Portmann, C., Kontnik, R., Walsh, C.T., & Clardy, J. (2011). NRPS substrate promiscuity diversifies the xenematides. Organic Letters, 13(19), 5144-5147. https://doi.org/10.1021/ol2020237
Dalton, D.A., Kramer, S., Azios, N., Fusaro, S., Cahill, E., & Kennedy, C. (2004). Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS microbiology ecology, 49(3), 469-479. https://doi.org/10.1016/j.femsec.2004.04.010
Fromin, N., Achouak, W., Thiéry, J.M., & Heulin, T. (2001). The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype. FEMS Microbiology Ecology, 37(1), 21 29. https://doi.org/10.1111/j.1574-6941.2001.tb00849.x
Granér, G., Persson, P., Meijer, J., & Alström, S. (2003). A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiology Letters, 224(2), 269-276. https://doi.org/10.1016/S0378-1097(03)00449-X
Hall, T.A. (1999). Bio Edit; a user-friendly biological sequence aliment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symp. Ser. (Vol. 41, p. 95).
Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8), 3233-3241. https://doi.org/10.1128/aem.63.8.3233-3241.1997
Ho, G.T., Bräunlich, M., Austarheim, I., Wangensteen, H., Malterud, K.E., Slimestad, R., & Barsett, H. (2014). Immunomodulating activity of Aronia melanocarpa polyphenols. International Journal of Molecular Sciences, 15(7), 11626 11636. https://doi.org/10.3390/ijms150711626
Islam, M.A., Nain, Z., Alam, M.K., Banu, N.A., & Islam, M.R. (2018). In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp. cucumerinum. Egyptian journal of Biological Pest control, 28, 1-11. https://doi.org/10.1186/s41938-018-0097-1
Ji, S.H., Gururani, M.A., & Chun, S.C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological research, 169(1), 83-98. https://doi.org/10.1016/j.micres.2013.06.003
Kang, S.M., Radhakrishnan, R., & Lee, I.J. (2015). Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World Journal of Microbiology and Biotechnology, 31, 1517-1527. https://doi.org/10.1007/s11274-015-1896-0
Khan, M.S., Gao, J., Zhang, M., Xue, J., & Zhang, X. (2022). Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. Plos one, 17(6), e0269640. https://doi.org/10.1371/journal.pone.0269640
Kim, D.W., Han, H.A., Kim, J.K., Kim, D.H., & Kim, M.K. (2021). comparison of phytochemicals and antioxidant activities of berries cultivated in Korea: Identification of phenolic compounds in aronia by HPLC/Q-TOF MS. Preventive Nutrition and Food Science, 26(4), 459. https://doi.org/10.3746%2Fpnf.2021.26.4.459
Kim, J.D. (2005). Antifungal activity of lactic acid bacteria isolated from Kimchi against Aspergillus fumigatus. Mycobiology, 33(4), 210 214. https://doi.org/10.4489/MYCO.2005.33.4.210
Köberl, M., Ramadan, E.M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H., … & Berg, G. (2013). Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiology Letters, 342(2), 168-178. https://doi.org/10.1111/1574-6968.12089
Kulling, S.E., & Rawel, H.M. (2008). Chokeberry (Aronia melanocarpa)–A review on the characteristic components and potential health effects. Planta Medica, 74(13), 1625-1634. https://doi.org/10.1055/s-0028-1088306
Laveilhé, A., Fochesato, S., Lalaouna, D., Heulin, T., & Achouak, W. (2022). Phytobeneficial traits of rhizobacteria under the control of multiple molecular dialogues. Microbial Biotechnology, 15(7), 2083-2096. https://doi.org/10.1111/1751-7915.14023
Lee, T., Park, D., Kim, K., Lim, S.M., Yu, N.H., Kim, S., … & Kim, J.C. (2017). Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species. The Plant Pathology Journal, 33(5), 499. https://doi.org/10.5423%2FPPJ.FT.06.2017.0126
Mahaffee, W.F., & Kloepper, J.W. (1997). Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microbial Ecology, 34, 210-223. https://doi.org/10.1007/s002489900050
Manwar, A.V., Khandelwal, S.R., Chaudhari, B.L., Meyer, J.M., & Chincholkar, S.B. (2004). Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Applied Biochemistry and Biotechnology, 118, 243-251. https://doi.org/10.1385/ABAB:118:1-3:243
Miyamoto, T., Kawahara, M., & Minamisawa, K. (2004). Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Applied and Environmental Microbiology, 70(11), 6580-6586. https://doi.org/10.1128/AEM.70.11.6580-6586.2004
Moreira, R.R., Nesi, C.N., & De Mio, L.L.M. (2014). Bacillus spp. and Pseudomonas putida as inhibitors of the Colletotrichum acutatum group and potential to control Glomerella leaf spot. Biological control, 72, 30-37. https://doi.org/10.1016/j.biocontrol.2014.02.001
Musa, Z., Ma, J., Egamberdieva, D., Abdelshafy Mohamad, O.A., Abaydulla, G., Liu, Y., & Li, L. (2020). Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with the medicinal plant Thymus roseus. Frontiers in Microbiology, 11, 191. https://doi.org/10.3389/fmicb.2020.00191
Mustafa, L.B., Al-Bayati, A.I.N., & Özkoç, I. (2024). Salt-tolerant endophytic Pseudomonas putida isolated from Aronia prunifolia root with plant growth-promoting potential. World News of Natural Sciences, 53, 212-222.
Naranjo, H.D., Rat, A., De Zutter, N., De Ridder, E., Lebbe, L., Audenaert, K., & Willems, A. (2023). Uncovering Genomic Features and Biosynthetic Gene Clusters in Endophytic Bacteria from Roots of the Medicinal Plant Alkanna tinctoria Tausch as a Strategy to Identify Novel Biocontrol Bacteria. Microbiology Spectrum, 11(4), e00747 23. https://doi.org/10.1128/spectrum.00747-23
Nielsen, T.H., Sørensen, D., Tobiasen, C., Andersen, J. B., Christophersen, C., Givskov, M., & Sørensen, J. (2002). Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Applied and environmental microbiology, 68(7), 3416-3423. https://doi.org/10.1128/AEM.68.7.3416-3423.2002
Pascual, P. (2000). Characterization of Rhizoctonia solani isolates causing banded leaf and sheath blight in corn by conventional and PCR-based techniques. Plant Pathol., 49, 108-118.
Rana, K.L., Kour, D., Kaur, T., Devi, R., Yadav, A., & Yadav, A.N. (2021). Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.). Journal of Applied Biology and Biotechnology, 9(3), 41-50. http://dx.doi.org/10.7324/JABB.2021.9306
Ross, I.L., Alami, Y., Harvey, P.R., Achouak, W., & Ryder, M.H. (2000). Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Applied and Environmental Microbiology, 66(4), 1609-1616. https://doi.org/10.1128/AEM.66.4.1609-1616.2000
Safaa, A.L., & Qaysi, Z.A.T. (2016). Levan production using Pseudomonas brassicacearum isolated from rhizosphere soil of cowpea farm in Iraq. Iraqi journal of biotechnology, 15(1).
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406 425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Salazar, O., Schneider, J.H., Julian, M.C., Keijer, J., & Rubio, V. (1999). Phylogenetic subgrouping of Rhizoctonia solani AG 2 isolates based on ribosomal ITS sequences. Mycologia, 91(3), 459-467. https://doi.org/10.1080/00275514.1999.12061039
Santra, H.K., & Banerjee, D. (2023). Antifungal activity of volatile and non-volatile metabolites of endophytes of Chloranthus elatior Sw. Frontiers in Plant Science, 14, 1156323. https://doi.org/10.3389/fpls.2023.1156323
Shahid, M., Singh, U.B., Ilyas, T., Malviya, D., Vishwakarma, S.K., Shafi, Z., … & Singh, H.V. (2022). Bacterial inoculants for control of fungal diseases in Solanum lycopersicum L.(tomatoes): a comprehensive overview. Rhizosphere Microbes: Biotic Stress Management, 311-339. https://doi.org/10.1007/978-981-19-5872-4_15
Siciliano, S.D., Fortin, N., Mihoc, A., Wisse, G., Labelle, S., Beaumier, D., … & Greer, C.W. (2001). Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Applied and Environmental Microbiology, 67(6), 2469-2475. https://doi.org/10.1128/AEM.67.6.2469-2475.2001
Singh, P., Singh, R.K., Guo, D.J., Sharma, A., Singh, R.N., Li, D.P., … & Li, Y.R. (2021). Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18 – A plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Frontiers in Microbiology, 12, 628376. https://doi.org/10.3389/fmicb.2021.628376
Sneath, P.H.A. (1992). Preface to the present edition. In International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision. ASM Press.
Sturz, A.V. (1999). Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol., 48, 360-369. https://doi.org/10.1046/j.1365-3059.1999.00351.x
Szopa, A., Kokotkiewicz, A., Kubica, P., Banaszczak, P., Wojtanowska-Krośniak, A., Krośniak, M., … & Ekiert, H. (2017). Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A.× prunifolia and their antioxidant activities. European Food Research and Technology, 243, 1645-1657. https://doi.org/10.1007/s00217-017-2872-8
Szopa, A., Kubica, P., Snoch, A., & Ekiert, H. (2018). High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia× prunifolia. Acta Physiologiae Plantarum, 40, 1-11. https://doi.org/10.1007/s11738-018-2623-x
Taheri, R., Connolly, B.A., Brand, M.H., & Bolling, B.W. (2013). Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. Journal of agricultural and food chemistry, 61(36), 8581-8588. https://doi.org/10.1021/jf402449q
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197
Trivedi, P., Pandey, A., & Palni, L.M.S. (2008). In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiological Research, 163(3), 329-336. https://doi.org/10.1016/j.micres.2006.06.007
Wang, X., Wang, C., Li, Q., Zhang, J., Ji, C., Sui, J., … & Liu, X. (2018). Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil‐borne wheat diseases. Journal of Applied Microbiology, 125(6), 1868 1880. https://doi.org/10.1155/2019/3638926
Weller, D.M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology, 97(2), 250-256. https://doi.org/10.1094/PHYTO-97-2-0250
Yang, K., Qin, Q., Liu, Y., Zhang, L., Liang, L., Lan, H., … & Wang, S. (2016). Adenylate cyclase AcyA regulates development, aflatoxin biosynthesis and fungal virulence in Aspergillus flavus. Frontiers in Cellular and Infection Microbiology, 6, 190. https://doi.org/10.3389/fcimb.2016.00190
Zinniel, D.K., Lambrecht, P., Harris, N.B., Feng, Z., Kuczmarski, D., Higley, P., … & Vidaver, A.K. (2002). Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and environmental microbiology, 68(5), 2198-2208. https://doi.org/10.1128/AEM.68.5.2198-2208.2002
Biological control of pathogenic fungi using Pseudomonas brassicacearum isolated from Aronia × prunifolia (Marshall) Rehder roots
Yıl 2024, Cilt: 11 Sayı: 3, 421 – 434, 29.08.2024
Luau Burhan Mustafa , Ahmed Ismael Naqee Al-bayatı , Dunya Albayati , İbrahim Özkoç
https://doi.org/10.21448/ijsm.1385251
Öz
Endophytic bacteria, which are the subject of this study, serve as natural antifungal agents in the struggle against fungal infections, offering an eco-friendly alternative to chemical fungicides. So, it was aimed to determine the antifungal capacities of endophytic bacteria from Aronia ×prunifolia roots in the study. 25 endophytic bacteria were isolated, and their ability to act as biocontrol agents was evaluated by measuring fungal growth inhibition and chemical properties. Later, bacteria that showed a positive effect were identified through 16S gene sequencing. The results showed that the LB2 bacteria had the greatest ability to inhibit the selected fungi and the biochemical tests showed that the bacteria were Gram-negative, did not form spores, their colonies were well defined, and they could break down starch and gelatin, which was later diagnosed as Pseudomonas brassicacearum according to phylogenetic relationships. This study is the first report on which P. brassicacearum was isolated from A. ×prunifolia roots for the first time. These findings contribute to our understanding of the potential of endophytic bacteria, particularly P. brassicacearum, as natural antifungal agents in plant and human protection, offering a promising and sustainable approach to combat fungal infections while reducing the use of chemical fungicides.
Achouak, W., Sutra, L., Heulin, T., Meyer, J.M., Fromin, N., Degraeve, S., … & Gardan, L. (2000). Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. International Journal of Systematic and Evolutionary Microbiology, 50(1), 9-18. https://doi.org/10.1099/00207713-50-1-9
Adeleke, B.S., & Babalola, O.O. (2022). Meta-omics of endophytic microbes in agricultural biotechnology. Biocatalysis and Agricultural Biotechnology, 42, 102332. https://doi.org/10.1016/j.bcab.2022.102332
Afsharmanesh, H., Ahmadzadeh, M., & Sharifi-Tehrani, A. (2006). Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads. Communications in Agricultural and Applied Biological Sciences, 71(3 Pt B), 1021-1029.
Akdemir, S., Torçuk, A.I., & Uysal Seçkin, G. (2023). Determination of Quality Parameters of Aronia Melanocarpa During Cold Storage. Erwerbs Obstbau, 1 7. https://doi.org/10.1007/s10341-023-00845-4
Alsohiby, F.A.A., Yahya, S., & Humaid, A.A. (2016). Screening of soil isolates of bacteria for antagonistic activity against plant pathogenic fungi. PSM Microbiology, 1(1), 5-9.
Anand, U., Pal, T., Yadav, N., Singh, V.K., Tripathi, V., Choudhary, K.K., … & Singh, A.K. (2023). Current scenario and future prospects of endophytic microbes: promising candidates for abiotic and biotic stress management for agricultural and environmental sustainability. Microbial Ecology, 1-32. https://doi.org/10.1007/s00248-023-02190-1
Bahmani, K., Hasanzadeh, N., Harighi, B., & Marefat, A. (2021). Isolation and identification of endophytic bacteria from potato tissues and their effects as biological control agents against bacterial wilt. Physiological and Molecular Plant Pathology, 116, 101692. https://doi.org/10.1016/j.pmpp.2021.101692
Berg, G., & Hallmann, J. (2006). Control of plant pathogenic fungi with bacterial endophytes. Microbial Root Endophytes, 53-69. https://doi.org/10.1007/3-540-33526-9
Berg, G., Krechel, A., Ditz, M., Sikora, R.A., Ulrich, A., & Hallmann, J. (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51(2), 215-229. https://doi.org/10.1016/j.femsec.2004.08.006
Berry, C., Fernando, W.D., Loewen, P.C., & De Kievit, T.R. (2010). Lipopeptides are essential for Pseudomonas sp. DF41 biocontrol of Sclerotinia sclerotiorum. Biological Control, 55(3), 211-218. https://doi.org/10.1016/j.biocontrol.2010.09.011
Bhaskar, P.V., Grossart, H.P., Bhosle, N.B., & Simon, M. (2005). Production of macroaggregates from dissolved exopolymeric substances (EPS) of bacterial and diatom origin. FEMS Microbiology Ecology, 53(2), 255 264. https://doi.org/10.1016/j.femsec.2004.12.013
Boonman, N., Chutrtong, J., Wanna, C., Boonsilp, S., & Chunchob, S. (2023). Antimicrobial activities of endophytic bacteria isolated from Ageratum conyzoides Linn. Biodiversitas Journal of Biological Diversity, 24(4). https://doi.org/10.13057/biodiv/d240405
Cao, L., Qiu, Z., You, J., Tan, H., & Zhou, S. (2005). Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiology Letters, 247(2), 147 152. https://doi.org/10.1016/j.femsle.2005.05.006
Caulier, S., Gillis, A., Colau, G., Licciardi, F., Liépin, M., Desoignies, N., … & Bragard, C. (2018). Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology, 9, 143. https://doi.org/10.3389/fmicb.2018.00143
Celka, Z., & Szkudlarz, P. (2010). Spontaneous occurrence and dispersion of Aronia x prunifolia [Marshall] rehder [Rosaceae] in Poland on the example of the'Bagna'bog complex near Chlebowo [western Poland]. Acta Societatis Botanicorum Poloniae, 79(1), 37-42.
Chen, C., Bauske, E.M., Musson, G., Rodriguezkabana, R., & Kloepper, J.W. (1995). Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 5(1), 83-91. https://doi.org/10.1006/bcon.1995.1009
Cho, S.J., Park, S.R., Kim, M.K., Lim, W.J., Ryu, S.K., An, C.L., … & Yun, H.D. (2002). Endophytic Bacillus sp. isolated from the interior of balloon flower root. Bioscience, biotechnology, and biochemistry, 66(6), 1270-1275. https://doi.org/10.1271/bbb.66.1270
Chung, B.S., Aslam, Z., Kim, S.W., Kim, G.G., Kang, H.S., Ahn, J.W., & Chung, Y.R. (2008). A bacterial endophyte, Pseudomonas brassicacearum YC5480, isolated from the root of Artemisia sp. producing antifungal and phytotoxic compounds. The Plant Pathology Journal, 24(4), 461-468. https://doi.org/10.5423/PPJ.2008.24.4.461
Cipriano, M.A.P., Freitas-Iório, R.D.P., Dimitrov, M.R., de Andrade, S.A.L., Kuramae, E.E., & Silveira, A.P.D.D. (2021). Plant-growth endophytic bacteria improve nutrient use efficiency and modulate foliar N-metabolites in sugarcane seedling. Microorganisms, 9(3), 479. https://doi.org/10.3390/microorganisms9030479
Correa, P.A., Nosheen, A., Yasmin, H., & Ansari, M.J. (2022). Antifungal Antibiotics Biosynthesized by Major PGPR. In Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion (pp. 199-247). Cham: Springer International Publishing. https://doi.org/10.36721/PJPS.2023.36.3.SP.927-934.1
Crawford, J.M., Portmann, C., Kontnik, R., Walsh, C.T., & Clardy, J. (2011). NRPS substrate promiscuity diversifies the xenematides. Organic Letters, 13(19), 5144-5147. https://doi.org/10.1021/ol2020237
Dalton, D.A., Kramer, S., Azios, N., Fusaro, S., Cahill, E., & Kennedy, C. (2004). Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS microbiology ecology, 49(3), 469-479. https://doi.org/10.1016/j.femsec.2004.04.010
Fromin, N., Achouak, W., Thiéry, J.M., & Heulin, T. (2001). The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype. FEMS Microbiology Ecology, 37(1), 21 29. https://doi.org/10.1111/j.1574-6941.2001.tb00849.x
Granér, G., Persson, P., Meijer, J., & Alström, S. (2003). A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiology Letters, 224(2), 269-276. https://doi.org/10.1016/S0378-1097(03)00449-X
Hall, T.A. (1999). Bio Edit; a user-friendly biological sequence aliment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symp. Ser. (Vol. 41, p. 95).
Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8), 3233-3241. https://doi.org/10.1128/aem.63.8.3233-3241.1997
Ho, G.T., Bräunlich, M., Austarheim, I., Wangensteen, H., Malterud, K.E., Slimestad, R., & Barsett, H. (2014). Immunomodulating activity of Aronia melanocarpa polyphenols. International Journal of Molecular Sciences, 15(7), 11626 11636. https://doi.org/10.3390/ijms150711626
Islam, M.A., Nain, Z., Alam, M.K., Banu, N.A., & Islam, M.R. (2018). In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp. cucumerinum. Egyptian journal of Biological Pest control, 28, 1-11. https://doi.org/10.1186/s41938-018-0097-1
Ji, S.H., Gururani, M.A., & Chun, S.C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological research, 169(1), 83-98. https://doi.org/10.1016/j.micres.2013.06.003
Kang, S.M., Radhakrishnan, R., & Lee, I.J. (2015). Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World Journal of Microbiology and Biotechnology, 31, 1517-1527. https://doi.org/10.1007/s11274-015-1896-0
Khan, M.S., Gao, J., Zhang, M., Xue, J., & Zhang, X. (2022). Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. Plos one, 17(6), e0269640. https://doi.org/10.1371/journal.pone.0269640
Kim, D.W., Han, H.A., Kim, J.K., Kim, D.H., & Kim, M.K. (2021). comparison of phytochemicals and antioxidant activities of berries cultivated in Korea: Identification of phenolic compounds in aronia by HPLC/Q-TOF MS. Preventive Nutrition and Food Science, 26(4), 459. https://doi.org/10.3746%2Fpnf.2021.26.4.459
Kim, J.D. (2005). Antifungal activity of lactic acid bacteria isolated from Kimchi against Aspergillus fumigatus. Mycobiology, 33(4), 210 214. https://doi.org/10.4489/MYCO.2005.33.4.210
Köberl, M., Ramadan, E.M., Adam, M., Cardinale, M., Hallmann, J., Heuer, H., … & Berg, G. (2013). Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiology Letters, 342(2), 168-178. https://doi.org/10.1111/1574-6968.12089
Kulling, S.E., & Rawel, H.M. (2008). Chokeberry (Aronia melanocarpa)–A review on the characteristic components and potential health effects. Planta Medica, 74(13), 1625-1634. https://doi.org/10.1055/s-0028-1088306
Laveilhé, A., Fochesato, S., Lalaouna, D., Heulin, T., & Achouak, W. (2022). Phytobeneficial traits of rhizobacteria under the control of multiple molecular dialogues. Microbial Biotechnology, 15(7), 2083-2096. https://doi.org/10.1111/1751-7915.14023
Lee, T., Park, D., Kim, K., Lim, S.M., Yu, N.H., Kim, S., … & Kim, J.C. (2017). Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species. The Plant Pathology Journal, 33(5), 499. https://doi.org/10.5423%2FPPJ.FT.06.2017.0126
Mahaffee, W.F., & Kloepper, J.W. (1997). Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microbial Ecology, 34, 210-223. https://doi.org/10.1007/s002489900050
Manwar, A.V., Khandelwal, S.R., Chaudhari, B.L., Meyer, J.M., & Chincholkar, S.B. (2004). Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Applied Biochemistry and Biotechnology, 118, 243-251. https://doi.org/10.1385/ABAB:118:1-3:243
Miyamoto, T., Kawahara, M., & Minamisawa, K. (2004). Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Applied and Environmental Microbiology, 70(11), 6580-6586. https://doi.org/10.1128/AEM.70.11.6580-6586.2004
Moreira, R.R., Nesi, C.N., & De Mio, L.L.M. (2014). Bacillus spp. and Pseudomonas putida as inhibitors of the Colletotrichum acutatum group and potential to control Glomerella leaf spot. Biological control, 72, 30-37. https://doi.org/10.1016/j.biocontrol.2014.02.001
Musa, Z., Ma, J., Egamberdieva, D., Abdelshafy Mohamad, O.A., Abaydulla, G., Liu, Y., & Li, L. (2020). Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with the medicinal plant Thymus roseus. Frontiers in Microbiology, 11, 191. https://doi.org/10.3389/fmicb.2020.00191
Mustafa, L.B., Al-Bayati, A.I.N., & Özkoç, I. (2024). Salt-tolerant endophytic Pseudomonas putida isolated from Aronia prunifolia root with plant growth-promoting potential. World News of Natural Sciences, 53, 212-222.
Naranjo, H.D., Rat, A., De Zutter, N., De Ridder, E., Lebbe, L., Audenaert, K., & Willems, A. (2023). Uncovering Genomic Features and Biosynthetic Gene Clusters in Endophytic Bacteria from Roots of the Medicinal Plant Alkanna tinctoria Tausch as a Strategy to Identify Novel Biocontrol Bacteria. Microbiology Spectrum, 11(4), e00747 23. https://doi.org/10.1128/spectrum.00747-23
Nielsen, T.H., Sørensen, D., Tobiasen, C., Andersen, J. B., Christophersen, C., Givskov, M., & Sørensen, J. (2002). Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Applied and environmental microbiology, 68(7), 3416-3423. https://doi.org/10.1128/AEM.68.7.3416-3423.2002
Pascual, P. (2000). Characterization of Rhizoctonia solani isolates causing banded leaf and sheath blight in corn by conventional and PCR-based techniques. Plant Pathol., 49, 108-118.
Rana, K.L., Kour, D., Kaur, T., Devi, R., Yadav, A., & Yadav, A.N. (2021). Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.). Journal of Applied Biology and Biotechnology, 9(3), 41-50. http://dx.doi.org/10.7324/JABB.2021.9306
Ross, I.L., Alami, Y., Harvey, P.R., Achouak, W., & Ryder, M.H. (2000). Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Applied and Environmental Microbiology, 66(4), 1609-1616. https://doi.org/10.1128/AEM.66.4.1609-1616.2000
Safaa, A.L., & Qaysi, Z.A.T. (2016). Levan production using Pseudomonas brassicacearum isolated from rhizosphere soil of cowpea farm in Iraq. Iraqi journal of biotechnology, 15(1).
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406 425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Salazar, O., Schneider, J.H., Julian, M.C., Keijer, J., & Rubio, V. (1999). Phylogenetic subgrouping of Rhizoctonia solani AG 2 isolates based on ribosomal ITS sequences. Mycologia, 91(3), 459-467. https://doi.org/10.1080/00275514.1999.12061039
Santra, H.K., & Banerjee, D. (2023). Antifungal activity of volatile and non-volatile metabolites of endophytes of Chloranthus elatior Sw. Frontiers in Plant Science, 14, 1156323. https://doi.org/10.3389/fpls.2023.1156323
Shahid, M., Singh, U.B., Ilyas, T., Malviya, D., Vishwakarma, S.K., Shafi, Z., … & Singh, H.V. (2022). Bacterial inoculants for control of fungal diseases in Solanum lycopersicum L.(tomatoes): a comprehensive overview. Rhizosphere Microbes: Biotic Stress Management, 311-339. https://doi.org/10.1007/978-981-19-5872-4_15
Siciliano, S.D., Fortin, N., Mihoc, A., Wisse, G., Labelle, S., Beaumier, D., … & Greer, C.W. (2001). Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Applied and Environmental Microbiology, 67(6), 2469-2475. https://doi.org/10.1128/AEM.67.6.2469-2475.2001
Singh, P., Singh, R.K., Guo, D.J., Sharma, A., Singh, R.N., Li, D.P., … & Li, Y.R. (2021). Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18 – A plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Frontiers in Microbiology, 12, 628376. https://doi.org/10.3389/fmicb.2021.628376
Sneath, P.H.A. (1992). Preface to the present edition. In International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision. ASM Press.
Sturz, A.V. (1999). Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol., 48, 360-369. https://doi.org/10.1046/j.1365-3059.1999.00351.x
Szopa, A., Kokotkiewicz, A., Kubica, P., Banaszczak, P., Wojtanowska-Krośniak, A., Krośniak, M., … & Ekiert, H. (2017). Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A.× prunifolia and their antioxidant activities. European Food Research and Technology, 243, 1645-1657. https://doi.org/10.1007/s00217-017-2872-8
Szopa, A., Kubica, P., Snoch, A., & Ekiert, H. (2018). High production of bioactive depsides in shoot and callus cultures of Aronia arbutifolia and Aronia× prunifolia. Acta Physiologiae Plantarum, 40, 1-11. https://doi.org/10.1007/s11738-018-2623-x
Taheri, R., Connolly, B.A., Brand, M.H., & Bolling, B.W. (2013). Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. Journal of agricultural and food chemistry, 61(36), 8581-8588. https://doi.org/10.1021/jf402449q
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725-2729. https://doi.org/10.1093/molbev/mst197
Trivedi, P., Pandey, A., & Palni, L.M.S. (2008). In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiological Research, 163(3), 329-336. https://doi.org/10.1016/j.micres.2006.06.007
Wang, X., Wang, C., Li, Q., Zhang, J., Ji, C., Sui, J., … & Liu, X. (2018). Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil‐borne wheat diseases. Journal of Applied Microbiology, 125(6), 1868 1880. https://doi.org/10.1155/2019/3638926
Weller, D.M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology, 97(2), 250-256. https://doi.org/10.1094/PHYTO-97-2-0250
Yang, K., Qin, Q., Liu, Y., Zhang, L., Liang, L., Lan, H., … & Wang, S. (2016). Adenylate cyclase AcyA regulates development, aflatoxin biosynthesis and fungal virulence in Aspergillus flavus. Frontiers in Cellular and Infection Microbiology, 6, 190. https://doi.org/10.3389/fcimb.2016.00190
Zinniel, D.K., Lambrecht, P., Harris, N.B., Feng, Z., Kuczmarski, D., Higley, P., … & Vidaver, A.K. (2002). Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and environmental microbiology, 68(5), 2198-2208. https://doi.org/10.1128/AEM.68.5.2198-2208.2002
Toplam 66 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
İngilizce
Konular
Mikrobiyoloji (Diğer)
Bölüm
Makaleler
Yazarlar
Luau Burhan Mustafa ONDOKUZ MAYIS ÜNİVERSİTESİ 0000-0001-8197-4357 Iraq
Ahmed Ismael Naqee Al-bayatı University of Tikrit 0000-0001-5411-7448 Iraq
Dunya Albayati Iraqi Ministry of Education 0009-0006-9152-2323 Iraq
İbrahim Özkoç ONDOKUZ MAYIS ÜNİVERSİTESİ 0000-0001-8179-0961 Türkiye
Erken Görünüm Tarihi
6 Ağustos 2024
Yayımlanma Tarihi
29 Ağustos 2024
Gönderilme Tarihi
2 Kasım 2023
Kabul Tarihi
19 Mart 2024
Yayımlandığı Sayı
Yıl 2024 Cilt: 11 Sayı: 3
Kaynak Göster
APA
Mustafa, L. B., Al-bayatı, A. I. N., Albayati, D., Özkoç, İ. (2024). Biological control of pathogenic fungi using Pseudomonas brassicacearum isolated from Aronia × prunifolia (Marshall) Rehder roots. International Journal of Secondary Metabolite, 11(3), 421-434. https://doi.org/10.21448/ijsm.1385251