Effects of humic acid and mineral Zn fertilizer on Zn uptake and maize yield in soils formed on limestone and marl parent materials

Yıl 2024, Cilt: 13 Sayı: 1, 1 – 16, 23.07.2024

https://doi.org/10.21657/soilst.1520537

Öz

Kaynakça

  • Aguiar, N. O., Novotny, E. H., Oliveira, A. L., Rumjanek, V. M., Olivares, F. L., & Canellas, L. P. (2013). Predic-tion of humic acids bioactivity using spectroscopy and multivariate analysis. Journal of Geochemical Exploration, 129, 95-102. http://dx.doi.org/10.1016/j. gexplo.2012.10.005
  • Alloway, B.J. (2009). Soil Factors Associated with Zinc Deficiency in Crops and Humans. Environmental Geochemistry and Health. 31:537-548. http://dx.doi.org/10.1007/s10653-009-9255-4
  • Alumaa, P., Steinnes, E., Kirso, U., & Petersell, V. (2001). Heavy metal sorption by different Estonian soil types at low equilibrium solution concentra-tions. Proc. Estonian Acad. Sci. Chem, 50(2), 104-115. http://dx.doi.org/10.3176/chem.2001.2.05.
  • Bailey, L., Lekkerkerker, H. N., & Maitland, G. C. (2015). Smectite clay–inorganic nanoparticle mixed suspen-sions: phase behaviour and rheology. Soft Mat-ter, 11(2), 222-236. http://dx.doi.org/10.1039/c4sm01717j
  • Blatt, H., & Tracy, R.J. (1996). Petrology, 2nd. edit. W.H. Freeman & Co., 529pp.
  • Boguta, P., & Sokołowska, Z. (2016). Interactions of Zn (II) ions with humic acids isolated from various type of soils. Effect of pH, Zn concentrations and humic acids chemical properties. PLoS One, 11(4), e0153626. https://doi.org/10.1371/journal.pone.0153626.
  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of so-ils.http://dx.doi.org/10.2134/agronj1951.00021962004300090005x
  • Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., & Clark, F. E. (1965). Methods of soil analysis, part (1) and part (2). Am. Soc. Agron. Inc., Publ. Madison, Wisconsin, USA. https://doi.org/10.12691/ijebb-3-1-3
  • Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: micronutrients. In Marschner's mineral nutrition of higher plants (pp. 191-248). Academic Press. https://doi.org/10.1016/B978-0-12-384905-2.00007-8
  • Brown, G., & Brindley, G. W. (1980). X-ray diffraction procedures for clay mineral identification.
  • Brown, P. H., Cakmak, I., & Zhang, Q. (1993). Form and function of zinc plants. In Zinc in Soils and Plants: Proceedings of the International Symposium on ‘Zinc in Soils and Plants’ held at The University of Western Australia, 27–28 September, 1993 (pp. 93-106). Dor-drecht: Springer Netherlands.
  • Çakmak, İ., Kalaycı, M., Ekiz, H., Braun, H. J., Kılınç, Y., & Yılmaz, A. (1999). Zinc deficiency as a practical prob-lem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crops Re-search, 60(1-2), 175-188. https://doi.org/10.1016/S0378-4290(98)00139-7
  • Cerda, A. (2002). The effect of season and parent material on water erosion on highly eroded soils in eastern Spain. J. Arid. Environ. 52:319-337. https://doi.org/10.1006/jare.2002.1009
  • Çavdar, A. O., Arcasoy, A., Cin, S., Babacan, E., & Gözdasoğlu, S. (1983). Geophagia in Turkey: iron and zinc deficiency, iron and zinc absorption studies and response to treatment with zinc in geophagia cas-es. Progress in clinical and biological research, 129, 71-97.
  • de Morais, T. M. O., Berenguer, E., Barlow, J., França, F., Lennox, G. D., Malhi, Y., … & Ferreira, J. (2021). Leaf-litter production in human-modified Amazonian for-ests following the El Niño-mediated drought and fires of 2015–2016. Forest Ecology and Management, 496, 119441.https://doi.org/10.1016/j.foreco.2021.119441
  • Delgado, A., & Gómez, J. A. (2016). The soil. Physical, chemical and biological properties. Principles of agronomy for sustainable agriculture, 15-26. https://doi.org/10.1007/978-3-319-46116-8_2
  • Dogar, M. A., & Van Hai, T. (1980). Effect of P, N and HCO3-Levels in the Nutrient Solution on Rate of Zn Absorp-tion by Rice Roots and Zn Content in Plants. Zeitschrift für Pflanzenphysiologie, 98(3), 203-212. https://doi.org/10.1080/01904167.2014.920377
  • Essington, M.E. (2015). Soil and Water Chemistry: An Integrative Approach. 2nd edition. CRC Press, Boca Raton, Florida, USA, 656 pp.
  • Eyupoglu, F., Kurucu, N., & Sanysag, U., (1994). Status of plant available micronutrients in Turkish soils. In: Soil and Fertilizer Research Institute 1993 annual report. Report No: 118, Ankara, Turkey.
  • Gümüş, İ., & Şeker, C. (2015). Influence of humic acid applications on modulus of rupture, aggregate stabil-ity, electrical conductivity, carbon and nitrogen content of a crusting problem soil. Solid Earth, 6(4), 1231-1236.https://doi.org/10.5194/se-6-1231-2015
  • Jackson, J.B.C. (1997). Reefs since Columbus. Coral Reefs 16:23-32.
  • Jacobs, P. M. (1998). Influence of parent material grain size on genesis of the Sangamon Geosol in south-central Indiana. Quaternary International, 51, 127-132. Johnston, C. T., de Oliveira, M. F., Teppen, B. J., Sheng, G., & Boyd, S. A. (2001). Spectroscopic study of nitroaro-matic− smectite sorption mechanisms. Environmental science & technology, 35(24), 4767-4772. http://doi.org/10.1021/es010909x Justi, M., Morais, E. G., & Silva, C. A. (2019). Fulvic acid in foliar spray is more effective than humic acid via soil in improving coffee seedlings growth. Archives of Agronomy and Soil Science. http://doi.org/10.1080/03650340.2019.1584396 Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants, 4th ed. CRC Press, Boca Raton, Florida, USA
  • Kacar, B. (1998). Toprakta Çinkonun Bulunuşu, Yarayişliliği ve Tepkimeleri. 1.Ulusal Çinko Kongresi, 12–16 Mayis 1997, Eskişehir. 47-60. Adana.
  • Kloprogge, J. T., & Frost, R. L. (1999). Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. Journal of Solid State Chemistry, 146(2), 506-515. https://doi.org/10.1006/jssc.1999.8413
  • Laird, D. A., & Fleming, P. D. (1999). Mechanisms for adsorption of organic bases on hydrated smectite surfaces. Environmental Toxicology and Chemistry: An International Journal, 18(8), 1668-1672. https://doi.org/10.1897/15515028(1999)018<1668:MFAOOB>2.3.CO;2
  • Li, H., Teppen, B. J., Laird, D. A., Johnston, C. T., & Boyd, S. A. (2004). Geochemical modulation of pesticide sorption on smectite clay. Environmental science & technolo-gy, 38(20), 5393-5399. https://doi.org/10.1021/es0494555
  • Lindsay, W.L., & Norvell, W.A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42:421-28. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  • Martınez-Mena, M., Castillo, V., & Albaladejo, J. (2002). Relations between interrill erosion processes and sediment particle size distribution in a semiarid Medi-terranean area of SE of Spain. Geomorphology, 45(3-4), 261-275. https://doi.org/10.1016/S0169-555X(01)00158-1
  • Marshall, C. P., & Fairbridge, R. W. (Eds.). (1999). Encyclopedia of geochemistry. Springer Sci-ence & Business Media.
  • Milliken, K. L. (2003). Late diagenesis and mass transfer in sandstone shale sequences (Vol. 7, p. 407).
  • Montalvo, D., Degryse, F., Da Silva, R. C., Baird, R., & McLaughlin, M. J. (2016). Agronomic effectiveness of zinc sources as micronutrient fertilizer. Advances in agronomy, 139, 215-267.https://doi.org/10.1016/bs.agron.2016.05.004
  • Mortland, M.M., (1970). Clay-organic complexes and interactions. Adv Agron. 22:75–117.
  • Muscolo, A., Sidari, M., & Nardi, S. (2013). Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration, 129, 57-63. https://doi.org/10.1016/j.gexplo.2012.10.012
  • Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promot-ers. Molecules, 26(8), 2256.https://doi.org/10.3390/molecules26082256
  • Olaetxea, M., De Hita, D., Garcia, C. A., Fuentes, M., Baigorri, R., Mora, V., & Garcia-Mina, J. M. (2018). Hypothetical framework integrating the main mecha-nisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot-growth. Applied Soil Ecology, 123, 521-537. http://dx.doi.org/10.1016/j.apsoil.2017.06.007
  • Peña-Méndez, E. M., Gajdošová, D., Novotná, K., Prošek, P., & Havel, J. (2005). Mass spectrometry of humic sub-stances of different origin including those from Ant-arctica: A comparative study. Talanta, 67(5), 880-890. http://dx.doi.org/10.1016/j.talanta.2005.03.032
  • Richard, L. A. (1954). Diagnosis and improvement of saline and alkaline soils. Handbook No. 60. US Department of Agriculture.
  • Rosa, S. D., Silva, C. A., & Maluf, H. J. G. M. (2018). Wheat nutrition and growth as affected by humic acid‐phosphate interaction. Journal of Plant Nutrition and Soil Science, 181(6), 870-877. http://dx.doi.org/10.1002/jpln.201700532
  • Rose, T. J., Impa, S. M., Rose, M. T., Pariasca-Tanaka, J., Mori, A., Heuer, S., & Wissuwa, M. (2013). Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. Annals of botany, 112(2), 331-345.http://dx.doi.org/10.1093/aob/mcs217
  • Rowley, M. C., Grand, S., Spangenberg, J. E., & Verrecchia, E. P. (2021). Evidence linking calcium to increased or-gano-mineral association in soils. Biogeochemistry, 153(3), 223-241.http://dx.doi.org/10.1007/s10533-021-00779-7
  • Sawhney, B. L., & Singh, S. S. (1997). Sorption of atrazine by Al-and Ca-saturated smectite. Clays and Clay Miner-als, 45(3), 333-338. https://doi.org/10.1346/CCMN.1997.0450304 Šestanović, S. (2001). Osnove geologije i petrografije, (The basics of geology and petrography in Croatian), Građevinski fakultet Sveučilišta u Splitu, Split.
  • Sheng, G., Johnston, C. T., Teppen, B. J., & Boyd, S. A. (2002). Adsorption of dinitrophenol herbicides from water by montmorillonites. Clays and Clay Miner-als, 50(1), 25-34.https://doi.org/10.1346/000986002761002630
  • Sillanpää, M. (1990). Micronutrient assessment at the country level: an international study (No. 63, pp. pp-208). http://dx.doi.org/10.1186/s12889-016-2765-y
  • Soil Survey Staff. (2014). Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0, ed. R. Burt and Soil Survey Staff. Lin-coln,NE:USDA Natural Resources Conservation Service.
  • Spark, K. M., Wells, J. D., & Johnson, B. B. (1997). The interaction of a humic acid with heavy metals. Soil Research, 35(1), 89-102. https://doi.org/10.1071/S96008
  • Sparks, D., (1996). Methods of Soil Analysis, Part 3. Chemical Methods, Soil Science Society of America Inc., Madison, Wisc, USA.
  • Sparks, D.L., (2003). Environmental Soil Chemistry 2nd Ed., Academic Press, Amsterdam, The Netherlands.
  • Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
  • Trehan, S. P., & Sekhon, G. S. (1977). Effect of clay, organic matter and CaCO 3 content on zinc adsorption by soils. Plant and Soil, 46, 329-336. https://doi.org/10.1007/BF00010089
  • Trettin Jr, C. C., Johnson, D. W., & Todd, D. E. (1999). Forest Nutrient and Carbon Pools at Walker Branch Water-shed Changes during a 21‐Year Period. Soil Science Society of America Journal, 63(5), 1436-1448. https://doi.org/10.2136/sssaj1999.6351436x
  • USGS. (2019). Illite Group Minerals. USGS Coastal and Marine Geology Program. Retrieved 3 Apr 2019.
  • Uygur, V., & Rimmer, D. L. (2000). Reactions of zinc with iron‐oxide coated calcite surfaces at alkaline pH. European Journal of Soil Science, 51(3), 511-516. https://doi.org/10.1046/j.1365-2389.2000.00318.x
  • Wang, K., & Xing, B. (2005). Structural and sorption characteristics of adsorbed humic acid on clay miner-als. Journal of Environmental Quality, 34(1), 342-349. https://doi.org/10.2134/jeq2005.0342
  • Washer, N. E., & Collins, M. E. (1988). Genesis of adjacent morphologically distinct soils in northwest Florida. Soil Science Society of America Journal, 52(1), 191-196. https://doi.org/10.2136/sssaj1988.03615995005200010033x
  • Weil, R.R., & Brady, N.C. (2017). Soil organic matter. Nature and properties of soils (15th ed). Pearson Education Limited, England, 545-601.
  • Whittig, L. D., & Allardice, W. R. (1986). X‐ray diffraction techniques. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 331-362.
  • Yavitt, J. B. (2000). Nutrient Dynamics of Soil Derived from Different Parent Material on Barro Colorado Island, Panama 1. Biotropica, 32(2), 198-207. https://doi.org/10.1111/j.1744-7429.2000.tb00462.x
  • Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., & Pinton, R. (2019). Humic substances contribute to plant iron nutrition acting as chelators and biostimu-lants. Frontiers in Plant Science, 10, 45287. https://doi.org/10.3389/fpls.2019.00675.

Effects of humic acid and mineral Zn fertilizer on Zn uptake and maize yield in soils formed on limestone and marl parent materials

Yıl 2024, Cilt: 13 Sayı: 1, 1 – 16, 23.07.2024

https://doi.org/10.21657/soilst.1520537

Öz

In this study, the effects of zinc (Zn) and humic acid (HA) applications on soils (12 Aridisol soil samples) formed on limestone and marl parent materials, which are very common in Türkiye, were tested by incubation, adsorption, and greenhouse experiments. Adsorption experiments were carried out using the batch sorption technique, and the Langmuir and Freundlich isotherm parameters were calculated. In the incubation, soils were incubated with control, HA, Zn, and HA+Zn, and the DTPA-Zn was tested in five different periods (1, 7, 15, 30, and 90th days). Maize was grown for eight weeks in pots in the greenhouse. The maximum Zn adsorption for all soils ranged between 3333 and 6250 mg kg-1 in marl soils and 1042 and 5263 mg kg-1 in limestone soils, which decreased to ranges between 2631 and 5555 mg kg-1 in marl soils and 1052 and 5000 mg kg-1 in limestone soils with HA appli-cation, respectively. The desorption rate (%) of adsorbed Zn increased as the initial Zn concentration increased in all soil series formed on marl (smectite clay mineral) and lime-stone (kaolinite clay mineral) parent materials. The effects of humic acid and Zn applica-tion on the fresh and dry weights of maize were found to be statistically significant at the 5% level for marl and limestone parent material. Humic acid application increased the fresh weight of maize compared with that of the control. The highest available Zn was determined in Başkuyu series (0.79 mg kg-1) formed on marl parent material, while the lowest available Zn was obtained in Saraççeşme series (0.60 mg kg-1) formed on limestone parent material. In the greenhouse, HA increased the fresh weight of maize in soils formed on both parent materials by 0.4 and 19.6%, respectively, compared to the control. Zn fertili-zation with HA further increased the fresh and dry yields, with 12 mg kg-1 performing bet-ter. Smax (maximum Zn adsorption of the soil) parameters of soils were negatively corre-lated with EC, Pav, Kav, organic matter, silt, clay, total N, and cation exchange capacity (CEC) of the samples. Although HA alone increases the availability of Zn in plants, HA + Zn appli-cations should be applied together to obtain higher yields.

Anahtar Kelimeler

Zn, Adsorption-Desorption, Marl soils, Lime soils, Maize

Kaynakça

  • Aguiar, N. O., Novotny, E. H., Oliveira, A. L., Rumjanek, V. M., Olivares, F. L., & Canellas, L. P. (2013). Predic-tion of humic acids bioactivity using spectroscopy and multivariate analysis. Journal of Geochemical Exploration, 129, 95-102. http://dx.doi.org/10.1016/j. gexplo.2012.10.005
  • Alloway, B.J. (2009). Soil Factors Associated with Zinc Deficiency in Crops and Humans. Environmental Geochemistry and Health. 31:537-548. http://dx.doi.org/10.1007/s10653-009-9255-4
  • Alumaa, P., Steinnes, E., Kirso, U., & Petersell, V. (2001). Heavy metal sorption by different Estonian soil types at low equilibrium solution concentra-tions. Proc. Estonian Acad. Sci. Chem, 50(2), 104-115. http://dx.doi.org/10.3176/chem.2001.2.05.
  • Bailey, L., Lekkerkerker, H. N., & Maitland, G. C. (2015). Smectite clay–inorganic nanoparticle mixed suspen-sions: phase behaviour and rheology. Soft Mat-ter, 11(2), 222-236. http://dx.doi.org/10.1039/c4sm01717j
  • Blatt, H., & Tracy, R.J. (1996). Petrology, 2nd. edit. W.H. Freeman & Co., 529pp.
  • Boguta, P., & Sokołowska, Z. (2016). Interactions of Zn (II) ions with humic acids isolated from various type of soils. Effect of pH, Zn concentrations and humic acids chemical properties. PLoS One, 11(4), e0153626. https://doi.org/10.1371/journal.pone.0153626.
  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of so-ils.http://dx.doi.org/10.2134/agronj1951.00021962004300090005x
  • Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., & Clark, F. E. (1965). Methods of soil analysis, part (1) and part (2). Am. Soc. Agron. Inc., Publ. Madison, Wisconsin, USA. https://doi.org/10.12691/ijebb-3-1-3
  • Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: micronutrients. In Marschner's mineral nutrition of higher plants (pp. 191-248). Academic Press. https://doi.org/10.1016/B978-0-12-384905-2.00007-8
  • Brown, G., & Brindley, G. W. (1980). X-ray diffraction procedures for clay mineral identification.
  • Brown, P. H., Cakmak, I., & Zhang, Q. (1993). Form and function of zinc plants. In Zinc in Soils and Plants: Proceedings of the International Symposium on ‘Zinc in Soils and Plants’ held at The University of Western Australia, 27–28 September, 1993 (pp. 93-106). Dor-drecht: Springer Netherlands.
  • Çakmak, İ., Kalaycı, M., Ekiz, H., Braun, H. J., Kılınç, Y., & Yılmaz, A. (1999). Zinc deficiency as a practical prob-lem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crops Re-search, 60(1-2), 175-188. https://doi.org/10.1016/S0378-4290(98)00139-7
  • Cerda, A. (2002). The effect of season and parent material on water erosion on highly eroded soils in eastern Spain. J. Arid. Environ. 52:319-337. https://doi.org/10.1006/jare.2002.1009
  • Çavdar, A. O., Arcasoy, A., Cin, S., Babacan, E., & Gözdasoğlu, S. (1983). Geophagia in Turkey: iron and zinc deficiency, iron and zinc absorption studies and response to treatment with zinc in geophagia cas-es. Progress in clinical and biological research, 129, 71-97.
  • de Morais, T. M. O., Berenguer, E., Barlow, J., França, F., Lennox, G. D., Malhi, Y., … & Ferreira, J. (2021). Leaf-litter production in human-modified Amazonian for-ests following the El Niño-mediated drought and fires of 2015–2016. Forest Ecology and Management, 496, 119441.https://doi.org/10.1016/j.foreco.2021.119441
  • Delgado, A., & Gómez, J. A. (2016). The soil. Physical, chemical and biological properties. Principles of agronomy for sustainable agriculture, 15-26. https://doi.org/10.1007/978-3-319-46116-8_2
  • Dogar, M. A., & Van Hai, T. (1980). Effect of P, N and HCO3-Levels in the Nutrient Solution on Rate of Zn Absorp-tion by Rice Roots and Zn Content in Plants. Zeitschrift für Pflanzenphysiologie, 98(3), 203-212. https://doi.org/10.1080/01904167.2014.920377
  • Essington, M.E. (2015). Soil and Water Chemistry: An Integrative Approach. 2nd edition. CRC Press, Boca Raton, Florida, USA, 656 pp.
  • Eyupoglu, F., Kurucu, N., & Sanysag, U., (1994). Status of plant available micronutrients in Turkish soils. In: Soil and Fertilizer Research Institute 1993 annual report. Report No: 118, Ankara, Turkey.
  • Gümüş, İ., & Şeker, C. (2015). Influence of humic acid applications on modulus of rupture, aggregate stabil-ity, electrical conductivity, carbon and nitrogen content of a crusting problem soil. Solid Earth, 6(4), 1231-1236.https://doi.org/10.5194/se-6-1231-2015
  • Jackson, J.B.C. (1997). Reefs since Columbus. Coral Reefs 16:23-32.
  • Jacobs, P. M. (1998). Influence of parent material grain size on genesis of the Sangamon Geosol in south-central Indiana. Quaternary International, 51, 127-132. Johnston, C. T., de Oliveira, M. F., Teppen, B. J., Sheng, G., & Boyd, S. A. (2001). Spectroscopic study of nitroaro-matic− smectite sorption mechanisms. Environmental science & technology, 35(24), 4767-4772. http://doi.org/10.1021/es010909x Justi, M., Morais, E. G., & Silva, C. A. (2019). Fulvic acid in foliar spray is more effective than humic acid via soil in improving coffee seedlings growth. Archives of Agronomy and Soil Science. http://doi.org/10.1080/03650340.2019.1584396 Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants, 4th ed. CRC Press, Boca Raton, Florida, USA
  • Kacar, B. (1998). Toprakta Çinkonun Bulunuşu, Yarayişliliği ve Tepkimeleri. 1.Ulusal Çinko Kongresi, 12–16 Mayis 1997, Eskişehir. 47-60. Adana.
  • Kloprogge, J. T., & Frost, R. L. (1999). Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. Journal of Solid State Chemistry, 146(2), 506-515. https://doi.org/10.1006/jssc.1999.8413
  • Laird, D. A., & Fleming, P. D. (1999). Mechanisms for adsorption of organic bases on hydrated smectite surfaces. Environmental Toxicology and Chemistry: An International Journal, 18(8), 1668-1672. https://doi.org/10.1897/15515028(1999)018<1668:MFAOOB>2.3.CO;2
  • Li, H., Teppen, B. J., Laird, D. A., Johnston, C. T., & Boyd, S. A. (2004). Geochemical modulation of pesticide sorption on smectite clay. Environmental science & technolo-gy, 38(20), 5393-5399. https://doi.org/10.1021/es0494555
  • Lindsay, W.L., & Norvell, W.A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42:421-28. https://doi.org/10.2136/sssaj1978.03615995004200030009x
  • Martınez-Mena, M., Castillo, V., & Albaladejo, J. (2002). Relations between interrill erosion processes and sediment particle size distribution in a semiarid Medi-terranean area of SE of Spain. Geomorphology, 45(3-4), 261-275. https://doi.org/10.1016/S0169-555X(01)00158-1
  • Marshall, C. P., & Fairbridge, R. W. (Eds.). (1999). Encyclopedia of geochemistry. Springer Sci-ence & Business Media.
  • Milliken, K. L. (2003). Late diagenesis and mass transfer in sandstone shale sequences (Vol. 7, p. 407).
  • Montalvo, D., Degryse, F., Da Silva, R. C., Baird, R., & McLaughlin, M. J. (2016). Agronomic effectiveness of zinc sources as micronutrient fertilizer. Advances in agronomy, 139, 215-267.https://doi.org/10.1016/bs.agron.2016.05.004
  • Mortland, M.M., (1970). Clay-organic complexes and interactions. Adv Agron. 22:75–117.
  • Muscolo, A., Sidari, M., & Nardi, S. (2013). Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration, 129, 57-63. https://doi.org/10.1016/j.gexplo.2012.10.012
  • Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promot-ers. Molecules, 26(8), 2256.https://doi.org/10.3390/molecules26082256
  • Olaetxea, M., De Hita, D., Garcia, C. A., Fuentes, M., Baigorri, R., Mora, V., & Garcia-Mina, J. M. (2018). Hypothetical framework integrating the main mecha-nisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot-growth. Applied Soil Ecology, 123, 521-537. http://dx.doi.org/10.1016/j.apsoil.2017.06.007
  • Peña-Méndez, E. M., Gajdošová, D., Novotná, K., Prošek, P., & Havel, J. (2005). Mass spectrometry of humic sub-stances of different origin including those from Ant-arctica: A comparative study. Talanta, 67(5), 880-890. http://dx.doi.org/10.1016/j.talanta.2005.03.032
  • Richard, L. A. (1954). Diagnosis and improvement of saline and alkaline soils. Handbook No. 60. US Department of Agriculture.
  • Rosa, S. D., Silva, C. A., & Maluf, H. J. G. M. (2018). Wheat nutrition and growth as affected by humic acid‐phosphate interaction. Journal of Plant Nutrition and Soil Science, 181(6), 870-877. http://dx.doi.org/10.1002/jpln.201700532
  • Rose, T. J., Impa, S. M., Rose, M. T., Pariasca-Tanaka, J., Mori, A., Heuer, S., & Wissuwa, M. (2013). Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. Annals of botany, 112(2), 331-345.http://dx.doi.org/10.1093/aob/mcs217
  • Rowley, M. C., Grand, S., Spangenberg, J. E., & Verrecchia, E. P. (2021). Evidence linking calcium to increased or-gano-mineral association in soils. Biogeochemistry, 153(3), 223-241.http://dx.doi.org/10.1007/s10533-021-00779-7
  • Sawhney, B. L., & Singh, S. S. (1997). Sorption of atrazine by Al-and Ca-saturated smectite. Clays and Clay Miner-als, 45(3), 333-338. https://doi.org/10.1346/CCMN.1997.0450304 Šestanović, S. (2001). Osnove geologije i petrografije, (The basics of geology and petrography in Croatian), Građevinski fakultet Sveučilišta u Splitu, Split.
  • Sheng, G., Johnston, C. T., Teppen, B. J., & Boyd, S. A. (2002). Adsorption of dinitrophenol herbicides from water by montmorillonites. Clays and Clay Miner-als, 50(1), 25-34.https://doi.org/10.1346/000986002761002630
  • Sillanpää, M. (1990). Micronutrient assessment at the country level: an international study (No. 63, pp. pp-208). http://dx.doi.org/10.1186/s12889-016-2765-y
  • Soil Survey Staff. (2014). Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0, ed. R. Burt and Soil Survey Staff. Lin-coln,NE:USDA Natural Resources Conservation Service.
  • Spark, K. M., Wells, J. D., & Johnson, B. B. (1997). The interaction of a humic acid with heavy metals. Soil Research, 35(1), 89-102. https://doi.org/10.1071/S96008
  • Sparks, D., (1996). Methods of Soil Analysis, Part 3. Chemical Methods, Soil Science Society of America Inc., Madison, Wisc, USA.
  • Sparks, D.L., (2003). Environmental Soil Chemistry 2nd Ed., Academic Press, Amsterdam, The Netherlands.
  • Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
  • Trehan, S. P., & Sekhon, G. S. (1977). Effect of clay, organic matter and CaCO 3 content on zinc adsorption by soils. Plant and Soil, 46, 329-336. https://doi.org/10.1007/BF00010089
  • Trettin Jr, C. C., Johnson, D. W., & Todd, D. E. (1999). Forest Nutrient and Carbon Pools at Walker Branch Water-shed Changes during a 21‐Year Period. Soil Science Society of America Journal, 63(5), 1436-1448. https://doi.org/10.2136/sssaj1999.6351436x
  • USGS. (2019). Illite Group Minerals. USGS Coastal and Marine Geology Program. Retrieved 3 Apr 2019.
  • Uygur, V., & Rimmer, D. L. (2000). Reactions of zinc with iron‐oxide coated calcite surfaces at alkaline pH. European Journal of Soil Science, 51(3), 511-516. https://doi.org/10.1046/j.1365-2389.2000.00318.x
  • Wang, K., & Xing, B. (2005). Structural and sorption characteristics of adsorbed humic acid on clay miner-als. Journal of Environmental Quality, 34(1), 342-349. https://doi.org/10.2134/jeq2005.0342
  • Washer, N. E., & Collins, M. E. (1988). Genesis of adjacent morphologically distinct soils in northwest Florida. Soil Science Society of America Journal, 52(1), 191-196. https://doi.org/10.2136/sssaj1988.03615995005200010033x
  • Weil, R.R., & Brady, N.C. (2017). Soil organic matter. Nature and properties of soils (15th ed). Pearson Education Limited, England, 545-601.
  • Whittig, L. D., & Allardice, W. R. (1986). X‐ray diffraction techniques. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5, 331-362.
  • Yavitt, J. B. (2000). Nutrient Dynamics of Soil Derived from Different Parent Material on Barro Colorado Island, Panama 1. Biotropica, 32(2), 198-207. https://doi.org/10.1111/j.1744-7429.2000.tb00462.x
  • Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., & Pinton, R. (2019). Humic substances contribute to plant iron nutrition acting as chelators and biostimu-lants. Frontiers in Plant Science, 10, 45287. https://doi.org/10.3389/fpls.2019.00675.

Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
BölümResearch Articles
Yazarlar

Mehmet Keçeci Soil, Fertilizer and Water Resources Central Research Institute, Ankara, Türkiye 0000-0003-1665-4677 Türkiye

Gamze Depel Soil, Fertilizer and Water Resources Central Research Institute, Ankara, Türkiye 0000-0003-2749-8243 Türkiye

Nuray Güneş Soil, Fertilizer and Water Resources Central Research Institute, Ankara, Türkiye 0009-0009-7228-8609 Türkiye

Sadık Usta ANKARA UNIVERSITY 0000-0001-5739-9962 Türkiye

Veli Uygur ISPARTA UYGULAMALI BİLİMLER ÜNİVERSİTESİ, TARIM BİLİMLERİ VE TEKNOLOJİLERİ FAKÜLTESİ, TOPRAK BİLİMİ VE BİTKİ BESLEME BÖLÜMÜ, TOPRAK BİLİMİ VE BİTKİ BESLEME PR. 0000-0003-3971-7714 Türkiye

Muhittin Onur Akça ANKARA ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, TOPRAK BİLİMİ VE BİTKİ BESLEME BÖLÜMÜ, TOPRAK ANABİLİM DALI 0000-0003-4540-9371 Türkiye

Zeynep Demir Soil, Fertilizer and Water Resources Central Research Institute, Ankara, Türkiye 0000-0002-7589-3216 Türkiye

Yayımlanma Tarihi23 Temmuz 2024
Gönderilme Tarihi7 Mart 2024
Kabul Tarihi1 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 1

Kaynak Göster

APAKeçeci, M., Depel, G., Güneş, N., Usta, S., vd. (2024). Effects of humic acid and mineral Zn fertilizer on Zn uptake and maize yield in soils formed on limestone and marl parent materials. Soil Studies, 13(1), 1-16. https://doi.org/10.21657/soilst.1520537

Download or read online: Click here