[en] | List of equations in classical mechanics

Classical mechanics is the branch of physics used to describe the motion of macroscopic objects.[1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known.[2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of reference. The point of concurrency of the three axes is known as the origin of the particular space.[3]

Classical mechanics utilises many equations—as well as other mathematical concepts—which relate various physical quantities to one another. These include differential equations, manifolds, Lie groups, and ergodic theory.[4] This article gives a summary of the most important of these.

This article lists equations from Newtonian mechanics, see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics).

Classical mechanics

Mass and inertia

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Linear, surface, volumetric mass densityλ or μ (especially in acoustics, see below) for Linear, σ for surface, ρ for volume.kg mn, n = 1, 2, 3M Ln
Moment of mass[5]m (No common symbol)Point mass:

m = r m {displaystyle mathbf {m} =mathbf {r} m}

Discrete masses about an axis

x i {displaystyle x_{i}}

:

m = i = 1 N r i m i {displaystyle mathbf {m} =sum _{i=1}^{N}mathbf {r} _{i}m_{i}}

Continuum of mass about an axis

x i {displaystyle x_{i}}

:

m = ρ ( r ) x i d r {displaystyle mathbf {m} =int rho left(mathbf {r} right)x_{i}mathrm {d} mathbf {r} }

kg mM L
Center of massrcom

(Symbols vary)

i-th moment of mass mL
2-Body reduced massm12, μ Pair of masses = m1 and m2kgM
Moment of inertia (MOI)IDiscrete Masses:

I = i m i r i = i | r i | 2 m {displaystyle I=sum _{i}mathbf {m} _{i}cdot mathbf {r} _{i}=sum _{i}left|mathbf {r} _{i}right|^{2}m}

Mass continuum:

I = | r | 2 d m = r d m = | r | 2 ρ d V {displaystyle I=int left|mathbf {r} right|^{2}mathrm {d} m=int mathbf {r} cdot mathrm {d} mathbf {m} =int left|mathbf {r} right|^{2}rho ,mathrm {d} V}

kg m2M L2

Derived kinematic quantities

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Velocityvm s−1L T−1
Accelerationam s−2L T−2
Jerkjm s−3L T−3
Jouncesm s−4L T−4
Angular velocityωrad s−1T−1
Angular Accelerationαrad s−2T−2
Angular jerkζrad s−3T−3

Derived dynamic quantities

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Momentumpkg m s−1M L T−1
ForceFN = kg m s−2M L T−2
ImpulseJ, Δp, Ikg m s−1M L T−1
Angular momentum about a position point r0,L, J, Skg m2 s−1M L2 T−1
Moment of a force about a position point r0,

Torque

τ, MN m = kg m2 s−2M L2 T−2
Angular impulseΔL (no common symbol)kg m2 s−1M L2 T−1

General energy definitions

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Mechanical work due to a Resultant ForceWJ = N m = kg m2 s−2M L2 T−2
Work done ON mechanical system, Work done BYWON, WBYJ = N m = kg m2 s−2M L2 T−2
Potential energyφ, Φ, U, V, EpJ = N m = kg m2 s−2M L2 T−2
Mechanical powerPW = J s−1M L2 T−3

Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U:

  • Wherever the force is zero, its potential energy is defined to be zero as well.
  • Whenever the force does work, potential energy is lost.

Generalized mechanics

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Generalized coordinatesq, Qvaries with choicevaries with choice
Generalized velocitiesvaries with choicevaries with choice
Generalized momentap, Pvaries with choicevaries with choice
LagrangianLJM L2 T−2
HamiltonianHJM L2 T−2
Action, Hamilton’s principal functionS, J sM L2 T−1

Kinematics

In the following rotational definitions, the angle can be any angle about the specified axis of rotation. It is customary to use θ, but this does not have to be the polar angle used in polar coordinate systems. The unit axial vector

n ^ = e ^ r × e ^ θ {displaystyle mathbf {hat {n}} =mathbf {hat {e}} _{r}times mathbf {hat {e}} _{theta }}

defines the axis of rotation,

e ^ r {displaystyle scriptstyle mathbf {hat {e}} _{r}}

= unit vector in direction of r,

e ^ θ {displaystyle scriptstyle mathbf {hat {e}} _{theta }}

= unit vector tangential to the angle.

TranslationRotation
VelocityAverage:

v a v e r a g e = Δ r Δ t {displaystyle mathbf {v} _{mathrm {average} }={Delta mathbf {r} over Delta t}}

Instantaneous:

v = d r d t {displaystyle mathbf {v} ={dmathbf {r} over dt}}

Angular velocity
AccelerationAverage:

a a v e r a g e = Δ v Δ t {displaystyle mathbf {a} _{mathrm {average} }={frac {Delta mathbf {v} }{Delta t}}}

Instantaneous:

a = d v d t = d 2 r d t 2 {displaystyle mathbf {a} ={frac {dmathbf {v} }{dt}}={frac {d^{2}mathbf {r} }{dt^{2}}}}

Angular acceleration

α = d ω d t = n ^ d 2 θ d t 2 {displaystyle {boldsymbol {alpha }}={frac {{rm {d}}{boldsymbol {omega }}}{{rm {d}}t}}=mathbf {hat {n}} {frac {{rm {d}}^{2}theta }{{rm {d}}t^{2}}}}

Rotating rigid body:

a = α × r + ω × v {displaystyle mathbf {a} ={boldsymbol {alpha }}times mathbf {r} +{boldsymbol {omega }}times mathbf {v} }

JerkAverage:

j a v e r a g e = Δ a Δ t {displaystyle mathbf {j} _{mathrm {average} }={frac {Delta mathbf {a} }{Delta t}}}

Instantaneous:

j = d a d t = d 2 v d t 2 = d 3 r d t 3 {displaystyle mathbf {j} ={frac {dmathbf {a} }{dt}}={frac {d^{2}mathbf {v} }{dt^{2}}}={frac {d^{3}mathbf {r} }{dt^{3}}}}

Angular jerk

ζ = d α d t = n ^ d 2 ω d t 2 = n ^ d 3 θ d t 3 {displaystyle {boldsymbol {zeta }}={frac {{rm {d}}{boldsymbol {alpha }}}{{rm {d}}t}}=mathbf {hat {n}} {frac {{rm {d}}^{2}omega }{{rm {d}}t^{2}}}=mathbf {hat {n}} {frac {{rm {d}}^{3}theta }{{rm {d}}t^{3}}}}

Rotating rigid body:

j = ζ × r + α × a {displaystyle mathbf {j} ={boldsymbol {zeta }}times mathbf {r} +{boldsymbol {alpha }}times mathbf {a} }

Dynamics

TranslationRotation
MomentumMomentum is the “amount of translation”

p = m v {displaystyle mathbf {p} =mmathbf {v} }

For a rotating rigid body:

p = ω × m {displaystyle mathbf {p} ={boldsymbol {omega }}times mathbf {m} }

Angular momentum

Angular momentum is the “amount of rotation”:

L = r × p = I ω {displaystyle mathbf {L} =mathbf {r} times mathbf {p} =mathbf {I} cdot {boldsymbol {omega }}}

and the cross-product is a pseudovector i.e. if r and p are reversed in direction (negative), L is not.

In general I is an order-2 tensor, see above for its components. The dot · indicates tensor contraction.

Force and Newton’s 2nd lawResultant force acts on a system at the center of mass, equal to the rate of change of momentum:

F = d p d t = d ( m v ) d t = m a + v d m d t {displaystyle {begin{aligned}mathbf {F} &={frac {dmathbf {p} }{dt}}={frac {d(mmathbf {v} )}{dt}}\&=mmathbf {a} +mathbf {v} {frac {{rm {d}}m}{{rm {d}}t}}\end{aligned}}}

For a number of particles, the equation of motion for one particle i is:[7]

d p i d t = F E + i j F i j {displaystyle {frac {mathrm {d} mathbf {p} _{i}}{mathrm {d} t}}=mathbf {F} _{E}+sum _{ineq j}mathbf {F} _{ij}}

where pi = momentum of particle i, Fij = force on particle i by particle j, and FE = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself.

Torque

Torque τ is also called moment of a force, because it is the rotational analogue to force:[8]

τ = d L d t = r × F = d ( I ω ) d t {displaystyle {boldsymbol {tau }}={frac {{rm {d}}mathbf {L} }{{rm {d}}t}}=mathbf {r} times mathbf {F} ={frac {{rm {d}}(mathbf {I} cdot {boldsymbol {omega }})}{{rm {d}}t}}}

For rigid bodies, Newton’s 2nd law for rotation takes the same form as for translation:

τ = d L d t = d ( I ω ) d t = d I d t ω + I α {displaystyle {begin{aligned}{boldsymbol {tau }}&={frac {{rm {d}}mathbf {L} }{{rm {d}}t}}={frac {{rm {d}}(mathbf {I} cdot {boldsymbol {omega }})}{{rm {d}}t}}\&={frac {{rm {d}}mathbf {I} }{{rm {d}}t}}cdot {boldsymbol {omega }}+mathbf {I} cdot {boldsymbol {alpha }}\end{aligned}}}

Likewise, for a number of particles, the equation of motion for one particle i is:[9]

d L i d t = τ E + i j τ i j {displaystyle {frac {mathrm {d} mathbf {L} _{i}}{mathrm {d} t}}={boldsymbol {tau }}_{E}+sum _{ineq j}{boldsymbol {tau }}_{ij}}

YankYank is rate of change of force:

Y = d F d t = d 2 p d t 2 = d 2 ( m v ) d t 2 = m j + 2 a d m d t + v d 2 m d t 2 {displaystyle {begin{aligned}mathbf {Y} &={frac {dmathbf {F} }{dt}}={frac {d^{2}mathbf {p} }{dt^{2}}}={frac {d^{2}(mmathbf {v} )}{dt^{2}}}\[1ex]&=mmathbf {j} +mathbf {2a} {frac {{rm {d}}m}{{rm {d}}t}}+mathbf {v} {frac {{rm {d^{2}}}m}{{rm {d}}t^{2}}}end{aligned}}}

For constant mass, it becomes;

Y = m j {displaystyle mathbf {Y} =mmathbf {j} }

Rotatum

Rotatum Ρ is also called moment of a Yank, because it is the rotational analogue to yank:

P = d τ d t = r × Y = d ( I α ) d t {displaystyle {boldsymbol {mathrm {P} }}={frac {{rm {d}}{boldsymbol {tau }}}{{rm {d}}t}}=mathbf {r} times mathbf {Y} ={frac {{rm {d}}(mathbf {I} cdot {boldsymbol {alpha }})}{{rm {d}}t}}}

ImpulseImpulse is the change in momentum:

Δ p = F d t {displaystyle Delta mathbf {p} =int mathbf {F} ,dt}

For constant force F:

Δ p = F Δ t {displaystyle Delta mathbf {p} =mathbf {F} Delta t}

Twirl/angular impulse is the change in angular momentum:

Δ L = τ d t {displaystyle Delta mathbf {L} =int {boldsymbol {tau }},dt}

For constant torque τ:

Δ L = τ Δ t {displaystyle Delta mathbf {L} ={boldsymbol {tau }}Delta t}

Precession

The precession angular speed of a spinning top is given by:

Ω = w r I ω {displaystyle {boldsymbol {Omega }}={frac {wr}{I{boldsymbol {omega }}}}}

where w is the weight of the spinning flywheel.

Energy

The mechanical work done by an external agent on a system is equal to the change in kinetic energy of the system:

General work-energy theorem (translation and rotation)

The work done W by an external agent which exerts a force F (at r) and torque τ on an object along a curved path C is:

W = Δ T = C ( F d r + τ n d θ ) {displaystyle W=Delta T=int _{C}left(mathbf {F} cdot mathrm {d} mathbf {r} +{boldsymbol {tau }}cdot mathbf {n} ,{mathrm {d} theta }right)}

where θ is the angle of rotation about an axis defined by a unit vector n.

Kinetic energy

The change in kinetic energy for an object initially traveling at speed

v 0 {displaystyle v_{0}}

and later at speed

v {displaystyle v}

is:

Δ E k = W = 1 2 m ( v 2 v 0 2 ) {displaystyle Delta E_{k}=W={frac {1}{2}}m(v^{2}-{v_{0}}^{2})}

Elastic potential energy

For a stretched spring fixed at one end obeying Hooke’s law, the elastic potential energy is

Δ E p = 1 2 k ( r 2 r 1 ) 2 {displaystyle Delta E_{p}={frac {1}{2}}k(r_{2}-r_{1})^{2}}

where r2 and r1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.

Euler’s equations for rigid body dynamics

Euler also worked out analogous laws of motion to those of Newton, see Euler’s laws of motion. These extend the scope of Newton’s laws to rigid bodies, but are essentially the same as above. A new equation Euler formulated is:[10]

I α + ω × ( I ω ) = τ {displaystyle mathbf {I} cdot {boldsymbol {alpha }}+{boldsymbol {omega }}times left(mathbf {I} cdot {boldsymbol {omega }}right)={boldsymbol {tau }}}

where I is the moment of inertia tensor.

General planar motion

The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane,

r = r ( t ) = r r ^ {displaystyle mathbf {r} =mathbf {r} (t)=r{hat {mathbf {r} }}}

the following general results apply to the particle.

KinematicsDynamics
Position

r = r ( r , θ , t ) = r r ^ {displaystyle mathbf {r} =mathbf {r} left(r,theta ,tright)=r{hat {mathbf {r} }}}

Velocity

v = r ^ d r d t + r ω θ ^ {displaystyle mathbf {v} ={hat {mathbf {r} }}{frac {mathrm {d} r}{mathrm {d} t}}+romega {hat {mathbf {theta } }}}

Momentum

p = m ( r ^ d r d t + r ω θ ^ ) {displaystyle mathbf {p} =mleft({hat {mathbf {r} }}{frac {mathrm {d} r}{mathrm {d} t}}+romega {hat {mathbf {theta } }}right)}

Angular momenta

L = m r × ( r ^ d r d t + r ω θ ^ ) {displaystyle mathbf {L} =mmathbf {r} times left({hat {mathbf {r} }}{frac {mathrm {d} r}{mathrm {d} t}}+romega {hat {mathbf {theta } }}right)}

Acceleration

a = ( d 2 r d t 2 r ω 2 ) r ^ + ( r α + 2 ω d r d t ) θ ^ {displaystyle mathbf {a} =left({frac {mathrm {d} ^{2}r}{mathrm {d} t^{2}}}-romega ^{2}right){hat {mathbf {r} }}+left(ralpha +2omega {frac {mathrm {d} r}{{rm {d}}t}}right){hat {mathbf {theta } }}}

The centripetal force is

F = m ω 2 R r ^ = ω 2 m {displaystyle mathbf {F} _{bot }=-momega ^{2}R{hat {mathbf {r} }}=-omega ^{2}mathbf {m} }

where again m is the mass moment, and the Coriolis force is

F c = 2 ω m d r d t θ ^ = 2 ω m v θ ^ {displaystyle mathbf {F} _{c}=2omega m{frac {{rm {d}}r}{{rm {d}}t}}{hat {mathbf {theta } }}=2omega mv{hat {mathbf {theta } }}}

The Coriolis acceleration and force can also be written:

F c = m a c = 2 m ω × v {displaystyle mathbf {F} _{c}=mmathbf {a} _{c}=-2m{boldsymbol {omega times v}}}

Central force motion

For a massive body moving in a central potential due to another object, which depends only on the radial separation between the centers of masses of the two objects, the equation of motion is:

d 2 d θ 2 ( 1 r ) + 1 r = μ r 2 l 2 F ( r ) {displaystyle {frac {d^{2}}{dtheta ^{2}}}left({frac {1}{mathbf {r} }}right)+{frac {1}{mathbf {r} }}=-{frac {mu mathbf {r} ^{2}}{mathbf {l} ^{2}}}mathbf {F} (mathbf {r} )}

Equations of motion (constant acceleration)

These equations can be used only when acceleration is constant. If acceleration is not constant then the general calculus equations above must be used, found by integrating the definitions of position, velocity and acceleration (see above).

Linear motionAngular motion

Galilean frame transforms

For classical (Galileo-Newtonian) mechanics, the transformation law from one inertial or accelerating (including rotation) frame (reference frame traveling at constant velocity – including zero) to another is the Galilean transform.

Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F’ moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F’. The situation is similar for relative accelerations.

Motion of entitiesInertial framesAccelerating frames
Translation

V = Constant relative velocity between two inertial frames F and F’.
A = (Variable) relative acceleration between two accelerating frames F and F’.

Relative position

r = r + V t {displaystyle mathbf {r} ‘=mathbf {r} +mathbf {V} t}

Relative velocity

v = v + V {displaystyle mathbf {v} ‘=mathbf {v} +mathbf {V} }

Equivalent accelerations

a = a {displaystyle mathbf {a} ‘=mathbf {a} }

Relative accelerations

a = a + A {displaystyle mathbf {a} ‘=mathbf {a} +mathbf {A} }

Apparent/fictitious forces

F = F F a p p {displaystyle mathbf {F} ‘=mathbf {F} -mathbf {F} _{mathrm {app} }}

Rotation

Ω = Constant relative angular velocity between two frames F and F’.
Λ = (Variable) relative angular acceleration between two accelerating frames F and F’.

Relative angular position

θ = θ + Ω t {displaystyle theta ‘=theta +Omega t}

Relative velocity

ω = ω + Ω {displaystyle {boldsymbol {omega }}’={boldsymbol {omega }}+{boldsymbol {Omega }}}

Equivalent accelerations

α = α {displaystyle {boldsymbol {alpha }}’={boldsymbol {alpha }}}

Relative accelerations

α = α + Λ {displaystyle {boldsymbol {alpha }}’={boldsymbol {alpha }}+{boldsymbol {Lambda }}}

Apparent/fictitious torques

τ = τ τ a p p {displaystyle {boldsymbol {tau }}’={boldsymbol {tau }}-{boldsymbol {tau }}_{mathrm {app} }}

Transformation of any vector T to a rotating frame

d T d t = d T d t Ω × T {displaystyle {frac {{rm {d}}mathbf {T} ‘}{{rm {d}}t}}={frac {{rm {d}}mathbf {T} }{{rm {d}}t}}-{boldsymbol {Omega }}times mathbf {T} }

Mechanical oscillators

SHM, DHM, SHO, and DHO refer to simple harmonic motion, damped harmonic motion, simple harmonic oscillator and damped harmonic oscillator respectively.

Equations of motion
Physical situationNomenclatureTranslational equationsAngular equations
SHM
  • x = Transverse displacement
  • θ = Angular displacement
  • A = Transverse amplitude
  • Θ = Angular amplitude
Unforced DHM
  • b = damping constant
  • κ = torsion constant
Angular frequencies
Physical situationNomenclatureEquations
Linear undamped unforced SHO
  • k = spring constant
  • m = mass of oscillating bob
Linear unforced DHO
  • k = spring constant
  • b = Damping coefficient
Low amplitude angular SHO
  • I = Moment of inertia about oscillating axis
  • κ = torsion constant
Low amplitude simple pendulum
  • L = Length of pendulum
  • g = Gravitational acceleration
  • Θ = Angular amplitude
Approximate value

ω = g L {displaystyle omega ={sqrt {frac {g}{L}}}}

Exact value can be shown to be:

ω = g L [ 1 + k = 1 n = 1 k ( 2 n 1 ) n = 1 m ( 2 n ) sin 2 n Θ ] {displaystyle omega ={sqrt {frac {g}{L}}}left[1+sum _{k=1}^{infty }{frac {prod _{n=1}^{k}left(2n-1right)}{prod _{n=1}^{m}left(2nright)}}sin ^{2n}Theta right]}

Energy in mechanical oscillations
Physical situationNomenclatureEquations
SHM energy
  • T = kinetic energy
  • U = potential energy
  • E = total energy
Potential energy

U = m 2 ( x ) 2 = m ( ω A ) 2 2 cos 2 ( ω t + ϕ ) {displaystyle U={frac {m}{2}}left(xright)^{2}={frac {mleft(omega Aright)^{2}}{2}}cos ^{2}(omega t+phi )}

Maximum value at x = A:

U m a x m 2 ( ω A ) 2 {displaystyle U_{mathrm {max} }{frac {m}{2}}left(omega Aright)^{2}}

Kinetic energy

T = ω 2 m 2 ( d x d t ) 2 = m ( ω A ) 2 2 sin 2 ( ω t + ϕ ) {displaystyle T={frac {omega ^{2}m}{2}}left({frac {mathrm {d} x}{mathrm {d} t}}right)^{2}={frac {mleft(omega Aright)^{2}}{2}}sin ^{2}left(omega t+phi right)}

Total energy

E = T + U {displaystyle E=T+U}

DHM energy

See also

Notes

  1. ^ Mayer, Sussman & Wisdom 2001, p. xiii
  2. ^ Berkshire & Kibble 2004, p. 1
  3. ^ Berkshire & Kibble 2004, p. 2
  4. ^ Arnold 1989, p. v
  5. ^ Section: Moments and center of mass.
  6. ^ R.P. Feynman; R.B. Leighton; M. Sands (1964). Feynman’s Lectures on Physics (volume 2). Addison-Wesley. pp. 31–7. ISBN 978-0-201-02117-2.
  7. ^ “Relativity, J.R. Forshaw 2009”
  8. ^ “Mechanics, D. Kleppner 2010”
  9. ^ “Relativity, J.R. Forshaw 2009”
  10. ^ “Relativity, J.R. Forshaw 2009”

References

Source: en.wikipedia.org