Extension of Synthetic Division and Its Applications

Yıl 2024, Cilt: 7 Sayı: 2, 59 – 67, 23.05.2024

https://doi.org/10.32323/ujma.1405654

Öz

Kaynakça

  • [1] G. Leinhardt, R. Putnam, R. Hattrup, Analysis of Arithmetic for Mathematics Teaching, Routledge, (2020), available at http://books.google.ie/books?id=0GUPEAAAQBAJ&printsec=frontcover&dq=arithmetic+mathematical+operations&hl=&cd=7&source=gbs_api.
  • [2] J. French, Common School Arithmetic, BoD-Books on Demand, (2023), available at http://books.google.ie/books?id=qPLEEAAAQBAJ&printsec=frontcover&dq=dividend+and+divisor&hl=&cd=8&source=gbs_api.
  • [3] E. Hulbert, M. Petit, C. Ebby, E. Cunningham, R. Laird, A Focus on Multiplication and Division, Taylor and Francis, (2023), available at http://books.google.ie/books?id=9Fi-EAAAQBAJ&printsec=frontcover&dq=purpose+of+mathematical+division&hl=&cd=2&source=gbs_api.
  • [4] J. Midthun, Division, World Book, (2022), available at http://books.google.ie/books?id=spuczwEACAAJ&dq=purpose+of+mathematical+division&hl=&cd=1&source=gbs_api.
  • [5] E. Berkove, M. Brilleslyper, Summation formulas, generating functions, and polynomial division, Math. Mag., 95(5) (2022), 509–519, available at https://doi.org/10.1080/0025570x.2022.2127302.
  • [6] F. Laudano, Remainder and quotient without polynomial long division, Internat. J. Math. Ed. Sci. Tech., 52(7) (2020), 1113–1123, available at https://doi.org/10.1080/0020739x.2020.1821108.
  • [7] J. Abramson, College Algebra, (2018), available at http://books.google.ie/books?id=hGGatAEACAAJ&dq=polynomial+and+rational+functions&hl=&cd=3&source=gbs_api.
  • [8] E. Gselmann, M. Iqbal, Monomial functions, normal polynomials and polynomial equations, Aequationes Math., 29 (2023), 1059–1082, available at https://doi.org/10.1007/s00010-023-00972-z.
  • [9] A. Dubickas, Shifted power of a polynomial with integral roots, Math. Slovaca, 73(4) (2023), 883–886, available at https://doi.org/10.1515/ms-2023-0065.
  • [10] S. MacLane, G. Birkhoff, Algebra, Amer. Math. Soc., (2023), available at http://books.google.ie/books?id=wQvfEAAAQBAJ&pg=PA280&dq=Linear+factorization+theorem+for+plynomial&hl=&cd=6&source=gbs_api.
  • [11] I. Qasim, Refinement of some Bernstein type inequalities for rational functions, Issues of Anal., 29(1) (2022), 122–132, available at https://doi.org/10.15393/j3.art.2022.11350.
  • [12] P. Aluffi, Algebra: Chapter 0, Amer. Math. Soc., (2021), available at http://books.google.ie/books?id=h4dNEAAAQBAJ&printsec=frontcover&dq=polynomial+division+theorem&hl=&cd=9&source=gbs_api.
  • [13] Y. Kim, B. Lee, Partial fraction decomposition by repeated synthetic division, American Journal of Computational Mathematics, 06(02) (2016), 153–158, available at https://doi.org/10.4236/ajcm.2016.62016.
  • [14] M. Mohajerani, Division of Polynomials, (2020), available at http://books.google.ie/books?id=XHc9zgEACAAJ&dq=synthetic+divisions+for+polynomial&hl=&cd=1&source=gbs_api.
  • [15] L. Marecek, M. AnthonySmith, A. Mathis, Intermediate Algebra 2e, (2020), available at http://books.google.ie/books?id=8dEGzgEACAAJ&dq=synthetic+divisions+for+polynomial&hl=&cd=4&source=gbs_api.

Extension of Synthetic Division and Its Applications

Yıl 2024, Cilt: 7 Sayı: 2, 59 – 67, 23.05.2024

https://doi.org/10.32323/ujma.1405654

Öz

This study focused on enquote{Extension of synthetic division and its applications}. The study was designed to show synthetic division and its extension and to point out the applications of synthetic division and its extension. The study found out that the concepts of polynomial and rational expressions in single variables are basic concepts to deal extension of synthetic division and its applications. Using the preliminary concepts, the concept of synthetic division is extended in this study. Also, the study found out that an extension of synthetic division is used for finding the oblique asymptote of the graph of a rational function, evaluating the integration of some rational functions, representing polynomial expression by factorial function in numerical analysis, and so on.

Anahtar Kelimeler

Extension of synthetic division, Polynomial expression, Rational expression, Synthetic division

Kaynakça

  • [1] G. Leinhardt, R. Putnam, R. Hattrup, Analysis of Arithmetic for Mathematics Teaching, Routledge, (2020), available at http://books.google.ie/books?id=0GUPEAAAQBAJ&printsec=frontcover&dq=arithmetic+mathematical+operations&hl=&cd=7&source=gbs_api.
  • [2] J. French, Common School Arithmetic, BoD-Books on Demand, (2023), available at http://books.google.ie/books?id=qPLEEAAAQBAJ&printsec=frontcover&dq=dividend+and+divisor&hl=&cd=8&source=gbs_api.
  • [3] E. Hulbert, M. Petit, C. Ebby, E. Cunningham, R. Laird, A Focus on Multiplication and Division, Taylor and Francis, (2023), available at http://books.google.ie/books?id=9Fi-EAAAQBAJ&printsec=frontcover&dq=purpose+of+mathematical+division&hl=&cd=2&source=gbs_api.
  • [4] J. Midthun, Division, World Book, (2022), available at http://books.google.ie/books?id=spuczwEACAAJ&dq=purpose+of+mathematical+division&hl=&cd=1&source=gbs_api.
  • [5] E. Berkove, M. Brilleslyper, Summation formulas, generating functions, and polynomial division, Math. Mag., 95(5) (2022), 509–519, available at https://doi.org/10.1080/0025570x.2022.2127302.
  • [6] F. Laudano, Remainder and quotient without polynomial long division, Internat. J. Math. Ed. Sci. Tech., 52(7) (2020), 1113–1123, available at https://doi.org/10.1080/0020739x.2020.1821108.
  • [7] J. Abramson, College Algebra, (2018), available at http://books.google.ie/books?id=hGGatAEACAAJ&dq=polynomial+and+rational+functions&hl=&cd=3&source=gbs_api.
  • [8] E. Gselmann, M. Iqbal, Monomial functions, normal polynomials and polynomial equations, Aequationes Math., 29 (2023), 1059–1082, available at https://doi.org/10.1007/s00010-023-00972-z.
  • [9] A. Dubickas, Shifted power of a polynomial with integral roots, Math. Slovaca, 73(4) (2023), 883–886, available at https://doi.org/10.1515/ms-2023-0065.
  • [10] S. MacLane, G. Birkhoff, Algebra, Amer. Math. Soc., (2023), available at http://books.google.ie/books?id=wQvfEAAAQBAJ&pg=PA280&dq=Linear+factorization+theorem+for+plynomial&hl=&cd=6&source=gbs_api.
  • [11] I. Qasim, Refinement of some Bernstein type inequalities for rational functions, Issues of Anal., 29(1) (2022), 122–132, available at https://doi.org/10.15393/j3.art.2022.11350.
  • [12] P. Aluffi, Algebra: Chapter 0, Amer. Math. Soc., (2021), available at http://books.google.ie/books?id=h4dNEAAAQBAJ&printsec=frontcover&dq=polynomial+division+theorem&hl=&cd=9&source=gbs_api.
  • [13] Y. Kim, B. Lee, Partial fraction decomposition by repeated synthetic division, American Journal of Computational Mathematics, 06(02) (2016), 153–158, available at https://doi.org/10.4236/ajcm.2016.62016.
  • [14] M. Mohajerani, Division of Polynomials, (2020), available at http://books.google.ie/books?id=XHc9zgEACAAJ&dq=synthetic+divisions+for+polynomial&hl=&cd=1&source=gbs_api.
  • [15] L. Marecek, M. AnthonySmith, A. Mathis, Intermediate Algebra 2e, (2020), available at http://books.google.ie/books?id=8dEGzgEACAAJ&dq=synthetic+divisions+for+polynomial&hl=&cd=4&source=gbs_api.

Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
BölümMakaleler
Yazarlar

Aschale Moges Belay Debark University 0009-0004-9351-1623 Ethiopia

Snehashish Chakraverty NIT 0000-0003-4857-644X India

Erken Görünüm Tarihi30 Mart 2024
Yayımlanma Tarihi23 Mayıs 2024
Gönderilme Tarihi16 Aralık 2023
Kabul Tarihi15 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APABelay, A. M., & Chakraverty, S. (2024). Extension of Synthetic Division and Its Applications. Universal Journal of Mathematics and Applications, 7(2), 59-67. https://doi.org/10.32323/ujma.1405654
AMABelay AM, Chakraverty S. Extension of Synthetic Division and Its Applications. Univ. J. Math. Appl. Mayıs 2024;7(2):59-67. doi:10.32323/ujma.1405654
ChicagoBelay, Aschale Moges, ve Snehashish Chakraverty. “Extension of Synthetic Division and Its Applications”. Universal Journal of Mathematics and Applications 7, sy. 2 (Mayıs 2024): 59-67. https://doi.org/10.32323/ujma.1405654.
EndNoteBelay AM, Chakraverty S (01 Mayıs 2024) Extension of Synthetic Division and Its Applications. Universal Journal of Mathematics and Applications 7 2 59–67.
IEEEA. M. Belay ve S. Chakraverty, “Extension of Synthetic Division and Its Applications”, Univ. J. Math. Appl., c. 7, sy. 2, ss. 59–67, 2024, doi: 10.32323/ujma.1405654.
ISNADBelay, Aschale Moges – Chakraverty, Snehashish. “Extension of Synthetic Division and Its Applications”. Universal Journal of Mathematics and Applications 7/2 (Mayıs 2024), 59-67. https://doi.org/10.32323/ujma.1405654.
JAMABelay AM, Chakraverty S. Extension of Synthetic Division and Its Applications. Univ. J. Math. Appl. 2024;7:59–67.
MLABelay, Aschale Moges ve Snehashish Chakraverty. “Extension of Synthetic Division and Its Applications”. Universal Journal of Mathematics and Applications, c. 7, sy. 2, 2024, ss. 59-67, doi:10.32323/ujma.1405654.
VancouverBelay AM, Chakraverty S. Extension of Synthetic Division and Its Applications. Univ. J. Math. Appl. 2024;7(2):59-67.

Download or read online: Click here