FACILE ULTRASONIC-ASSISTED ZIF-67 SYNTHESIS AND USE IN PHENOL REMOVAL FROM AQUEOUS SOLUTIONS

Yıl 2024, Cilt: 27 Sayı: 3, 1057 – 1068, 03.09.2024

https://doi.org/10.17780/ksujes.1458311

Öz

Oldukça geniş yüzey alanına sahip yeni bir malzeme sınıfı olan suya dayanıklı ZIF MOF’lar, organik kirleticilerin uzaklaştırılması konusunda son yıllarda dikkat çekmektedir. Bu tip MOF’ların mükemmel adsorpsiyon kapasiteleri, geniş gözenek hacimleri ve geri dönüştürülebilirlik performansları diğer birçok adsorbanla karşılaştırıldığında öne çıkmaktadır. Bu çalışmada da kobalt içerikli bir ZIF yapısı (ZIF-67) ultrasonik destekli solvotermal yöntem kullanılarak sentezlendi ve fenol adsorpsiyon performansı araştırıldı. Sentezlenen ZIF yapısının karakterizasyonu SEM-EDS, XRD, FTIR ve nitrojen adsorpsiyon analizleri ile gerçekleştirildi. Azot adsorpsiyon verileri, ZIF-67’nin mikro gözenekliliğe sahip olduğunu ve Brauner Emmet Teller (BET) modelinden hesaplanan yüzey alanının 1656 m2/g olduğunu gösterdi. ZIF-67’yi sentezlemek için sudaki önemli kirleticilerden biri olan fenol adsorpsiyonunun optimizasyonu, başlangıç fenol derişimi, adsorbent derişimi, pH ve sıcaklık değişkenleri için yanıt yüzey yöntemi (RSM) ile araştırıldı. RSM ile belirlenen çalışma seviyelerinde %92,2’lik en etkili giderim 30°C’de, 1 g/L adsorban derişiminde, 20 mg/L başlangıç fenol derişiminde ve pH 6,5’te elde edildi. Fenolün ZIF-67 üzerine adsorpsiyon izotermi, tek katmanlı bir etkileşim olan Langmuir modeline uyuyordu. Langmuir izoterm modeline göre ZIF-67’nin maksimum fenol adsorpsiyon kapasitesi 303,0 mg/g olarak belirlendi.

Anahtar Kelimeler

Deneysel tasarımı, Fenol adsorpsiyonu, Zeolitik imidazol kafesler, Ultrasonik destekli sentez

Proje Numarası

BAP proje No. 2023-1-AP4-4878

Kaynakça

  • Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284–1293. https://doi.org/10.1039/b804680h
  • Dai, H., Yuan, X., Jiang, L., Wang, H., Zhang, J., & Zhang, J. (2021). Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal : Fabrication , applications and perspective. Coordination Chemistry Reviews, 441, 213985. https://doi.org/10.1016/j.ccr.2021.213985
  • Desmiarti, R., Martynis, M., Trianda, Y., Li, F., Viqri, A., & Yamada, T. (2019). Phenol adsorption in water by granular activated carbon from coconut shell. Chemical Engineering, 10(8), 1488-1497.. doi:10.14716/ijtech.v10i8.3463.
  • Djebbar, M., F. Djafri, M. Bouchekara, and A. Djafri. 2012. “Adsorption of Phenol on Natural Clay.” Applied Water Science 2(2): 77–86. doi:10.1007/s13201-012-0031-8.
  • Duan, C., Yu, Y., & Hu, H. (2022). Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy and Environment, 7(1), 3–15. https://doi.org/10.1016/j.gee.2020.12.023
  • Duan, S., Long, X., Liu, J., Jin, X., Zhao, G., & Li, J. (2024). Zeolitic Imidazole Framework ( ZIF )– Sponge Composite for Highly Efficient U(VI) Elimination. Molecules, 29(Vi), 408.
  • Garg, R., & Sabouni, R. (2023). Efficient removal of cationic dye using ZIF-8 based sodium alginate composite beads: Performance evaluation in batch and column systems. Chemosphere, 342(September), 140163. https://doi.org/10.1016/j.chemosphere.2023.140163
  • Gonçalves Júnior, D. R., de Araújo, P. C. C., Simões, A. L. G., Voll, F. A. P., Parizi, M. P. S., de Oliveira, L. H., … & de Jesus Santos, E. (2022). Assessment of the adsorption capacity of phenol on magnetic activated carbon. Asia‐Pacific Journal of Chemical Engineering, 17(1), e2725. doi:10.1002/apj.2725.
  • Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Ozdes, D., Serencam, H., & Imamoglu, M. (2012). Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: Equilibrium, kinetic, and thermodynamic study. Journal of Chemical and Engineering Data, 57(10), 2733–2743. https://doi.org/10.1021/je300597u
  • Kalauni, K., Vedrtnam, A., Wdowin, M., & Chaturvedi, S. (2022). ZIF for CO2 Capture: Structure, Mechanism, Optimization, and Modeling. Processes, 10(12). https://doi.org/10.3390/pr10122689
  • Khay, I., Chaplais, G., Nouali, H., Ortiz, G., Marichal, C., & Patarin, J. (2016). Assessment of the energetic performances of various ZIFs with SOD or RHO topology using high pressure water intrusion-extrusion experiments. Dalton Transactions, 45(10), 4392–4400. https://doi.org/10.1039/c5dt03486h
  • Kouser, S., Hezam, A., Khadri, M. J. N., & Khanum, S. A. (2022). A review on zeolite imidazole frameworks: synthesis, properties, and applications. Journal of Porous Materials, 29(3), 663–681. https://doi.org/10.1007/s10934-021-01184-z
  • Li, J. M., Meng, X. G., Hu, C. W., & Du, J. (2009). Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresource Technology, 100(3), 1168-1173. doi:10.1016/j.biortech.2008.09.015.
  • Liu, G., Li, L., Huang, X., Zheng, S., Xu, X., Liu, Z., Zhang, Y., Wang, J., Lin, H., & Xu, D. (2018). Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. Journal of Materials Science, 53(15), 10772–10783. https://doi.org/10.1007/s10853-018-2352-y
  • Liu, Q. S., Zheng, T., Wang, P., Jiang, J. P., & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157(2-3), 348-356. doi:10.1016/j.cej.2009.11.013.
  • Liu, Y., Kravtsov, V. C., & Eddaoudi, M. (2008). Template-directed assembly of zeolite-like metal-organic frameworks (ZMOFs): A usf-ZMOF with an unprecedented zeolite topology. Angewandte Chemie – International Edition, 47(44), 8446–8449. https://doi.org/10.1002/anie.200802680
  • Maes, M., Schouteden, S., Alaerts, L., Depla, D., & De Vos, D. E. (2011). Extracting organic contaminants from water using the metal–organic framework Cr III (OH)·{O 2 C–C 6 H 4–CO 2}. Physical Chemistry Chemical Physics, 13(13), 5587-5589. doi:10.1039/c0cp01703e.
  • Mohtashami, S. A., Kolur, N. A., Kaghazchi, T., Asadi-Kesheh, R., & Soleimani, M. (2018). Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol. Turkish Journal of Chemistry, 42(6), 1720-1735. doi:10.3906/kim-1806-71.
  • Mojoudi, N., N. Mirghaffari, M. Soleimani, H. Shariatmadari, C. Belver, and J. Bedia. 2019. “Phenol Adsorption on High Microporous Activated Carbons Prepared from Oily Sludge: Equilibrium, Kinetic and Thermodynamic Studies.” Scientific Reports 9(1): 1–12. doi:10.1038/s41598-019-55794-4.
  • Tu, N. T. T., Sy, P. C., Thien, T. V., Toan, T. T. T., Phong, N. H., Long, H. T., & Khieu, D. Q. (2019). Microwave-assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. Journal of Materials Science, 54(17), 11654-11670.https://doi.org/10.1007/s10853-019-03709-z
  • Nouha, S., Souad, N. S., & Abdelmottalab, O. (2019). Enhanced adsorption of phenol using alkaline modified activated carbon prepared from olive stones. Journal of the Chilean Chemical Society, 64(1), 4352-4359. doi:10.4067/s0717-97072019000104352.
  • Pan, Y., Li, Z., Zhang, Z., Tong, X. S., Li, H., Jia, C. Z., Liu, B., Sun, C. Y., Yang, L. Y., Chen, G. J., & Ma, D. Y. (2016). Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67. Journal of Environmental Management, 169, 167–173. https://doi.org/10.1016/j.jenvman.2015.12.030.
  • Qian, J., Sun, F., & Qin, L. (2012). Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 82(2012), 220–223. https://doi.org/10.1016/j.matlet.2012.05.077.
  • Qian, L., Lei, D., Duan, X., Zhang, S., Song, W., Hou, C., & Tang, R. (2018). Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydrate Polymers, 192, 44–51. https://doi.org/10.1016/j.carbpol.2018.03.049.
  • Qin, J., Wang, S., & Wang, X. (2017). Applied Catalysis B : Environmental Visible-light reduction CO 2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. “Applied Catalysis B, Environmental,” 209, 476–482. https://doi.org/10.1016/j.apcatb.2017.03.018.
  • Wu, H., Qian, X., Zhu, H., Ma, S., Zhu, G., & Long, Y. (2016). Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation. RSC Advances, 6(9), 6915–6920. https://doi.org/10.1039/c5ra18557b.
  • Xie, B., Qin, J., Wang, S., Li, X., Sun, H., & Chen, W. (2020). Adsorption of Phenol on Commercial Activated Carbons: Modelling and Interpretation. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17030789.

FACILE ULTRASONIC-ASSISTED ZIF-67 SYNTHESIS AND USE IN PHENOL REMOVAL FROM AQUEOUS SOLUTIONS

Yıl 2024, Cilt: 27 Sayı: 3, 1057 – 1068, 03.09.2024

https://doi.org/10.17780/ksujes.1458311

Öz

Recently, water-stable ZIF MOFs, a new material class with a very large surface area, have attracted attention for the removal of organic pollutants. This type of MOF’s excellent adsorption capacities, large pore volumes, and recyclability performances stand out compared to many other adsorbents. In this work, the ZIF-67 structure, a cobalt-containing ZIF, was synthesized using the ultrasound-assisted solvothermal method, and its phenol adsorption performance was investigated. The characterization of the ZIF-67 structure was carried out by SEM-EDS, XRD, FTIR, and nitrogen adsorption analyses. Nitrogen adsorption data showed that ZIF-67 had microporosity, and the surface area calculated from the BET model was 1656 m2/g. To synthesize ZIF-67, optimization of phenol adsorption, one of the important pollutants in water, was investigated by response surface method (RSM) for initial phenol concentration, adsorbent concentration, pH, and temperature variables. At the operating levels determined by RSM, the most effective removal of 92.2% was obtained at 30°C, 1 g/L adsorbent concentration, 20 mg/L initial phenol concentration, and pH 6.5. The adsorption isotherm of phenol onto ZIF-67 was fit to the Langmuir model, which is a monolayer interaction. According to the Langmuir isotherm model, the maximum phenol adsorption capacity of ZIF-67 was determined as 303.0 mg/g.

Anahtar Kelimeler

Experimental design, phenol adsorption, zeolitic imidazole framework, ultrasonic-assisted synthesis

Destekleyen Kurum

Mersin University

Proje Numarası

BAP proje No. 2023-1-AP4-4878

Teşekkür

Thanks to the Mersin University Scientific Research Projects Unit for financial support (BAP project No. 2023-1-AP4-4878) and the Mersin University Advanced Technology, Education, Research, and Application Center (MEITAM), from whose infrastructure we benefited.

Kaynakça

  • Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284–1293. https://doi.org/10.1039/b804680h
  • Dai, H., Yuan, X., Jiang, L., Wang, H., Zhang, J., & Zhang, J. (2021). Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal : Fabrication , applications and perspective. Coordination Chemistry Reviews, 441, 213985. https://doi.org/10.1016/j.ccr.2021.213985
  • Desmiarti, R., Martynis, M., Trianda, Y., Li, F., Viqri, A., & Yamada, T. (2019). Phenol adsorption in water by granular activated carbon from coconut shell. Chemical Engineering, 10(8), 1488-1497.. doi:10.14716/ijtech.v10i8.3463.
  • Djebbar, M., F. Djafri, M. Bouchekara, and A. Djafri. 2012. “Adsorption of Phenol on Natural Clay.” Applied Water Science 2(2): 77–86. doi:10.1007/s13201-012-0031-8.
  • Duan, C., Yu, Y., & Hu, H. (2022). Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy and Environment, 7(1), 3–15. https://doi.org/10.1016/j.gee.2020.12.023
  • Duan, S., Long, X., Liu, J., Jin, X., Zhao, G., & Li, J. (2024). Zeolitic Imidazole Framework ( ZIF )– Sponge Composite for Highly Efficient U(VI) Elimination. Molecules, 29(Vi), 408.
  • Garg, R., & Sabouni, R. (2023). Efficient removal of cationic dye using ZIF-8 based sodium alginate composite beads: Performance evaluation in batch and column systems. Chemosphere, 342(September), 140163. https://doi.org/10.1016/j.chemosphere.2023.140163
  • Gonçalves Júnior, D. R., de Araújo, P. C. C., Simões, A. L. G., Voll, F. A. P., Parizi, M. P. S., de Oliveira, L. H., … & de Jesus Santos, E. (2022). Assessment of the adsorption capacity of phenol on magnetic activated carbon. Asia‐Pacific Journal of Chemical Engineering, 17(1), e2725. doi:10.1002/apj.2725.
  • Gundogdu, A., Duran, C., Senturk, H. B., Soylak, M., Ozdes, D., Serencam, H., & Imamoglu, M. (2012). Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: Equilibrium, kinetic, and thermodynamic study. Journal of Chemical and Engineering Data, 57(10), 2733–2743. https://doi.org/10.1021/je300597u
  • Kalauni, K., Vedrtnam, A., Wdowin, M., & Chaturvedi, S. (2022). ZIF for CO2 Capture: Structure, Mechanism, Optimization, and Modeling. Processes, 10(12). https://doi.org/10.3390/pr10122689
  • Khay, I., Chaplais, G., Nouali, H., Ortiz, G., Marichal, C., & Patarin, J. (2016). Assessment of the energetic performances of various ZIFs with SOD or RHO topology using high pressure water intrusion-extrusion experiments. Dalton Transactions, 45(10), 4392–4400. https://doi.org/10.1039/c5dt03486h
  • Kouser, S., Hezam, A., Khadri, M. J. N., & Khanum, S. A. (2022). A review on zeolite imidazole frameworks: synthesis, properties, and applications. Journal of Porous Materials, 29(3), 663–681. https://doi.org/10.1007/s10934-021-01184-z
  • Li, J. M., Meng, X. G., Hu, C. W., & Du, J. (2009). Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresource Technology, 100(3), 1168-1173. doi:10.1016/j.biortech.2008.09.015.
  • Liu, G., Li, L., Huang, X., Zheng, S., Xu, X., Liu, Z., Zhang, Y., Wang, J., Lin, H., & Xu, D. (2018). Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes @ organic framework ZIF-8. Journal of Materials Science, 53(15), 10772–10783. https://doi.org/10.1007/s10853-018-2352-y
  • Liu, Q. S., Zheng, T., Wang, P., Jiang, J. P., & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157(2-3), 348-356. doi:10.1016/j.cej.2009.11.013.
  • Liu, Y., Kravtsov, V. C., & Eddaoudi, M. (2008). Template-directed assembly of zeolite-like metal-organic frameworks (ZMOFs): A usf-ZMOF with an unprecedented zeolite topology. Angewandte Chemie – International Edition, 47(44), 8446–8449. https://doi.org/10.1002/anie.200802680
  • Maes, M., Schouteden, S., Alaerts, L., Depla, D., & De Vos, D. E. (2011). Extracting organic contaminants from water using the metal–organic framework Cr III (OH)·{O 2 C–C 6 H 4–CO 2}. Physical Chemistry Chemical Physics, 13(13), 5587-5589. doi:10.1039/c0cp01703e.
  • Mohtashami, S. A., Kolur, N. A., Kaghazchi, T., Asadi-Kesheh, R., & Soleimani, M. (2018). Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol. Turkish Journal of Chemistry, 42(6), 1720-1735. doi:10.3906/kim-1806-71.
  • Mojoudi, N., N. Mirghaffari, M. Soleimani, H. Shariatmadari, C. Belver, and J. Bedia. 2019. “Phenol Adsorption on High Microporous Activated Carbons Prepared from Oily Sludge: Equilibrium, Kinetic and Thermodynamic Studies.” Scientific Reports 9(1): 1–12. doi:10.1038/s41598-019-55794-4.
  • Tu, N. T. T., Sy, P. C., Thien, T. V., Toan, T. T. T., Phong, N. H., Long, H. T., & Khieu, D. Q. (2019). Microwave-assisted synthesis and simultaneous electrochemical determination of dopamine and paracetamol using ZIF-67-modified electrode. Journal of Materials Science, 54(17), 11654-11670.https://doi.org/10.1007/s10853-019-03709-z
  • Nouha, S., Souad, N. S., & Abdelmottalab, O. (2019). Enhanced adsorption of phenol using alkaline modified activated carbon prepared from olive stones. Journal of the Chilean Chemical Society, 64(1), 4352-4359. doi:10.4067/s0717-97072019000104352.
  • Pan, Y., Li, Z., Zhang, Z., Tong, X. S., Li, H., Jia, C. Z., Liu, B., Sun, C. Y., Yang, L. Y., Chen, G. J., & Ma, D. Y. (2016). Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67. Journal of Environmental Management, 169, 167–173. https://doi.org/10.1016/j.jenvman.2015.12.030.
  • Qian, J., Sun, F., & Qin, L. (2012). Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 82(2012), 220–223. https://doi.org/10.1016/j.matlet.2012.05.077.
  • Qian, L., Lei, D., Duan, X., Zhang, S., Song, W., Hou, C., & Tang, R. (2018). Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydrate Polymers, 192, 44–51. https://doi.org/10.1016/j.carbpol.2018.03.049.
  • Qin, J., Wang, S., & Wang, X. (2017). Applied Catalysis B : Environmental Visible-light reduction CO 2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. “Applied Catalysis B, Environmental,” 209, 476–482. https://doi.org/10.1016/j.apcatb.2017.03.018.
  • Wu, H., Qian, X., Zhu, H., Ma, S., Zhu, G., & Long, Y. (2016). Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation. RSC Advances, 6(9), 6915–6920. https://doi.org/10.1039/c5ra18557b.
  • Xie, B., Qin, J., Wang, S., Li, X., Sun, H., & Chen, W. (2020). Adsorption of Phenol on Commercial Activated Carbons: Modelling and Interpretation. International Journal of Environmental Research and Public Health, 17(3). https://doi.org/10.3390/ijerph17030789.

Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Kirliliği ve Önlenmesi, Ayırma İşlemleri
BölümÇevre Mühendisliği
Yazarlar

Cihan Geçgel MERSIN UNIVERSITY 0000-0001-7998-0811 Türkiye

Proje NumarasıBAP proje No. 2023-1-AP4-4878
Yayımlanma Tarihi3 Eylül 2024
Gönderilme Tarihi25 Mart 2024
Kabul Tarihi25 Nisan 2024
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 3

Kaynak Göster

APAGeçgel, C. (2024). FACILE ULTRASONIC-ASSISTED ZIF-67 SYNTHESIS AND USE IN PHENOL REMOVAL FROM AQUEOUS SOLUTIONS. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 1057-1068. https://doi.org/10.17780/ksujes.1458311

Download or read online: Click here