Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye)

Yıl 2024, Cilt: 10 Sayı: 2, 295 – 313, 18.07.2024

https://doi.org/10.21324/dacd.1407354

Öz

Günümüzde CBS (Coğrafi Bilgi Sistemleri) tabanlı ÇKKV (Çok Kriterli Karar Verme) yaklaşımları kullanılarak taşkın riskinin mekansal dağılımının bilinmesi birçok araştırmacının ele aldığı bir konu olmuştur. Bu bağlamda mevcut çalışma, N-AHS (Nötrosofik Analitik Hiyerarşi Süreci) tabanlı CBS yaklaşımını kullanarak taşkın riskinin mekansal dağılımına odaklanmaktadır. Önerilen yaklaşım Melet Havzası’nda (Türkiye) bir örnek olay olarak incelenmiştir. Yöntemin uygulama aşamasında dört karar verici taşkın kriterlerini dilsel terimler kullanarak birbirleriyle karşılaştırmıştır. Karar vericilerin görüşleri N-AHS ile birleştirilerek kriterler ağırlıklandırılmıştır. Sonuçlar, yağış, nehirden uzaklık, drenaj yoğunluğu, arazi kullanımı ve eğimin taşkını etkileyen en önemli faktörler olduğunu ve bu faktörlerin yaklaşık %74 oranında taşkına neden olduğu belirlenmiştir. Bunun dışında havzanın %10’unun yüksek ve çok yüksek taşkın riski sınıflarında yer aldığı ve bu riskli alanların geçmiş dönemlerin taşkın noktalarıyla örtüştüğü görülmüştür. Önerilen yaklaşım ve bulguların teorik ve pratik çıkarımlara sahip olması beklenmektedir.

Anahtar Kelimeler

Nötrosofik Küme, ÇKVV-GIS, AHS, Taşkın Riski, Melet Havzası, Türkiye

Kaynakça

  • Abdel-Basset, M., Mohamed, M., & Smarandache, F. (2018a). An extension of neutrosophic AHP–SWOT analysis for strategic planning and decision-making. Symmetry, 10, Article 116. https://doi.org/10.3390/sym10040116
  • Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018b). A hybrid approach of neutrosophic sets and DEMATEL method for developing suppliers election criteria. Design Automation for Embedded Systems, 22, 257–278. https://doi.org/10.1007/s10617-018-9203-6
  • Ahmad, S. S., & Simonovic, S. P. (2011). A three-dimensional fuzzy methodology for flood risk analysis. Journal Flood Risk Management, 4, 53–74. https://doi.org/10.1111/j.1753-318X.2011.01090.x
  • Arabameri, A., Rezaei, K., Cerdà, A., Conoscenti, C., & Kalantari, Z. (2019). A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of the Total Environment, 660, 443–458. https://doi.org/10.1016/j.scitotenv.2019.01.021
  • Arca, D., & Yalçın, F. (2023). Production of flood risk maps of İnebolu Basin using different fuzzy analytic hierarchy process methods. Journal of Disaster and Risk, 6(1), 70-83. https://doi.org/10.35341/afet.1137083
  • Aydın, M. C., & Birincioğlu, E. S. (2022). Flood risk analysis using gis-based analytical hierarchy process: a case study of Bitlis Province. Applied Water Science, 12, Article 122. https://doi.org/10.1007/s13201-022-01655-x
  • Cai, S., Fan, J., & Yang, W. (2021). Flooding risk assessment and analysis based on GIS and the TFN-AHP method: a case study of Chongqing, China. Atmosphere, 12(5), Article 623. https://doi.org/10.3390/atmos12050623
  • Cai, T., Li, X., Ding, X., Wang, J., & Zhan, J. (2019). Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. International Journal of Disaster Risk Reduction, 35, Article 101077. https://doi.org/10.1016/j.ijdrr.2019.101077
  • Chen, Y., Zhou, H., Zhang, H., Du, G., & Zhou, J. (2015). Urban flood risk warning under rapid urbanization. Environmental Research, 139, 3-10. https://doi.org/10.1016/j.envres.2015.02.028
  • Das, S. (2019). Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sensing Applications: Society and Environment, 14, 60–74. https://doi.org/10.1016/j.rsase.2019.02.006
  • Deli, I., & Subas, Y. (2014). Single valued neutrosophic numbers and their applications to multicriteria decision making problem. Neutrosophic Sets and Systems, 2(1), 1–13.
  • Ekmekçioğlu, Ö., Koç, K., & Özger, M. (2021). District based flood risk assessment in Istanbul using fuzzy analytical hierarchy process. Stochastic Environmental Research and Risk Assessment, 35, 617–637. https://doi.org/10.1007/s00477-020-01924-8
  • Foudi, S., Osés-Eraso, N., & Tamayo, I. (2015). Integrated spatial flood risk assessment: the case of Zaragoza. Land Use Policy, 42, 278–292. https://doi.org/10.1016/j.landusepol.2014.080.002
  • Ghosh, A., & Kar, S.K. (2018). Application of analytical hierarchyprocess (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Natural Hazards, 94, 349–368. https://doi.org/10.1007/s11069-018-3392-y
  • Hagos, Y.G., Andualem, T.G., Yibeltal, M., & Mengie, M.A. (2022). Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Applied Water Science, 12(7), 1–18. https://doi.org/10.1007/s13201-022-01674-8
  • Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., & Dlala, M. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geoscience, 12, Article 653. https://doi.org/10.1007/s12517-019-4754-9
  • Hategekimana, Y., Yu, L., Nie, Y., Zhu, J., Liu, F., & Guo, F. (2018). Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya. Natural Hazards, 92, 1137–1153. https://doi.org/10.1007/s11069-018-3244-9
  • Hatipoğlu, İ.K. (2017). Applied geomorphology of the lower and middle Melet River Melet, Ordu [Doktora Tezi, Ondokuz Mayıs University]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Jun, K-S., Chung, E-S., Kim, Y-G., & Kim, Y. (2013). A fuzzy multi-criteria approach toflood risk vulnerability in South Korea by considering climate change impacts. Expert Systems with Applications, 40, 1003–1013. https://doi.org/10.1016/j.eswa.2012.08.013
  • Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., & Nasseri, M. (2019). A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. Journal of Hydrology, 572, 17–31. https://doi.org/10.1016/j.jhydrol.2019.02.034
  • Kaur, G., & Garg, H. (2022). A new method for image processing using generalized linguistic neutrosophic cubic aggregation operator. Complex and Intelligent Systems, 8, 4911–4937. https://doi.org/10.1007/s40747-022-00718-5
  • Keskin, İ. (2011). 1/100.000 scale Türkiye geological maps Perşembe-F39 and Giresun-G39 sheets. MTA Publication.
  • Lai, C., Chen, X., Chen, X., Wang, Z., Wu, X., & Zhao, S. (2015). A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory. Natural Hazards, 77, 1243–1259. https://doi.org/10.1007/s11069-015-1645-6
  • Lappas, I., & Kallioras, A. (2019). Flood susceptibility assessment through GIS-based multi-criteria approach and analytical hierarchy process (AHP) in a River Basin in Central Greece. International Research Journal of Engineering and Technology, 6(3), 738–751.
  • Li, C., Chai, Y., Yang, L., & Li, H. (2016). Spatio-temporal distribution of flooddisastersandanalysis of influencingfactors in Africa. Natural Hazards, 82, 721–31. https://doi.org/10.1007/s11069-016-2181-8
  • Liu, Z., Merwade, V., & Jafarzadegan, K. (2019). Investigating the role of model structure and surface roughness in generating food in undation extents using one- and two-dimensional hydraulic models. Journal of Flood Risk Management, 12(1), Article 12347. https://doi.org/10.1111/jfr3.12347
  • Lu, Y., He, T., Xu, X., & Qiao, Z. (2021). Investigation the robustness of standard classification methods for defining urban heat islands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 11386–11394. https://doi.org/10.1109/JSTARS.2021.3124558
  • Lyu, H. M., Zhou, W. H., Shen, S. L., & Zhou, A. N. (2020). Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustainable Cities and Society, 56, Article 102103. https://doi.org/10.1016/j.scs.2020.102103
  • Mishra, K., & Sinha, R. (2020). Flood risk assessment in the Kosimega fan using multi-criteria decision analysis: a hydro-geomorphic approach. Geomorphology, 350, Article 106861. https://doi.org/10.1016/j.geomorph.2019.106861
  • Morea, H., & Samanta, S. (2020). Multi-criteria decision approach to identify flood vulnerability zones using geospatial technology in the kemp-welch catchment, Central Province. Applied Geomatics, 12(4), 427–440. https://doi.org/10.1007/s12518-020-00315-6
  • Mudashiru, R. B., Sabtu, N., Abdullah, A., Saleh, A., & Abustan, I. (2022a). Optimality of flood influencing factors for flood hazard mapping: an evaluation of two multi-criteria decision-making methods. Journal of Hydrology, 612, Article 128055. https://doi.org/10.1016/j.jhydrol.2022.128055
  • Mudashiru, R. B., Sabtu, N., Abdullah, R., Saleh, A., & Abustan, İ. (2022b). A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia. Natural Hazards, 112, 1903–1939. https://doi.org/10.1007/s11069-022-05250-w
  • Negese, A., Worku, D., Shitaye, A., & Getnet, H. (2022). Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot district, Northwestern Ethiopia. Applied Water Science, 12, 1–21, https://doi.org/10.1007/s13201-022-01772-7
  • Nsangou, D., Kpoumié, A., Mfonka, Z., Bateni, S. M., Ngouh, A. N., & NdamNgoupayou, J. R. (2022). The mfoundi watershed at yaoundé in the humid tropical zone of Cameroon: a case study of urban flood susceptibility mapping. Earth System and Environment, 6, 99-120. https://doi.org/10.1007/s41748-021-00276-9
  • Özşahin, E. (2022). Havsa (Edirne) ilçesinde taşkın tehlike duyarlılığının değerlendirilmesi. In M. Tan, & T. Erdoğan (Eds). Her Yönüyle Havsa, (pp.711-732). Paradigma Akademi Yayınları.
  • Pappenberger, F., Matgen, P., Beven, K. J., Henry, J. B., & Pfister, L. (2006). Influence of uncertain boundary conditions and model structure on flood in undation predictions. Advances in Water Resources, 29(10), 1430–1449. https://doi.org/10.1016/j.advwatres.2005.11.012
  • Penki, R., Basina, S. S., & Tanniru, S. R. (2022). Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh. Environmental Science and Pollution Research, 30, 99062–99075. https://doi.org/10.1007/s11356-022-22924-x
  • Saaty, T.L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  • Saaty, T.L. (2005). The oryand applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS Publications.
  • Smarandache, F. (1999). A unifying field in logic. Neutrosophy: neutrosophic probability, set, and logic. American ResearchPress.
  • Souissi, D., Souie, A., Sebei, A., Mahfoudhi, R., Zghibi, A., Zouhri, L., Amiri, W., & Ghanmi, M. (2022). Flood hazard mapping and assessment using fuzzy analytic hierarchy process and GIS techniques in Takelsa, Northeast Tunisia. Arabian Journal of Geoscience, 15, Article 1405. https://doi.org/10.1007/s12517-022-10541-4
  • Stanujkić, D., Karabašević, D., Popović, G., Pamučar, D., Stević, Ž., Zavadskas, E. K., & Smarandache, F. (2021). A single-valued neutrosophic extension of the EDAS method. Axioms, 10(4), Article 245. https://doi.org/10.3390/axioms10040245
  • Sümengen, M. (2013). 1/100.000 scale Türkiye geological maps Giresun-H40 sheet. MTA Publication.
  • Şenol, C. (2019a). Land use and spatial change in the Melet Stream Basin [Doktora Tezi, Marmara Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Şenol, C. (2019b). The situation of the spatial change in the lower part of the Melet River Basin is affected by potential flooding. International Journal of Geography and Geography Education, 40, 439-453. https://doi.org/10.32003/iggei.571481
  • Taş, M.A., & Yanık, M.E. (2022). Flood risk analysis of behzat river (Tokat) basin with analytic hierarchy process (AHP) method. Erzincan University Journal of Social Sciences Institute, 15(2), 185-199. https://doi.org/10.46790/erzisosbil.1221464
  • Tehrany, M. S., Lee, M. J., Pradhan, B., Jebur, M. N., & Lee, S. (2014). Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences, 72(10), 4001–4015. https://doi.org/10.1007/s12665-014-3289-3
  • Tella, A., & Balogun, A. L. (2020). Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria. Natural Hazards, 104, 2277–2306. https://doi.org/10.1007/s11069-020-04272-6
  • Toosi, A. S., Calbimonte, G. H., Nouri, H., & Alaghmand, S. (2019). River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: a case study. Jounal of Hydrology, 574, 660–671. https://doi.org/10.1016/j.jhydrol.2019.04.072
  • Tucker, C. (1979). Red and photographic infrared linear combination for monitoring vegetation of Environment. Remote Sensing of Environment, 8, 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  • Vaddiraju, S. C., & Talari, R. (2022). Urban flood susceptibility analysis of Saroor Nagar Watershed of Indiausing Geomatics-based multi-criteria analysis framework. Environmental Science and Pollution Research, 30, 107021–107040. https://doi.org/10.1007/s11356-022-24672-4
  • Vafadarnikjoo, A. (2020). Decision analysis in the UK energy supply chain risk management: Tools development and application [Doctoral thesis, University of East Anglia]. https://ueaeprints.uea.ac.uk/id/eprint/77909
  • Vafadarnikjoo, A., BadriAhmadi, H., Liou, J. J. H., Botelho, T., & Chalvatzis, K. (2021). Analyzing block chain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process. Annals of Operation Research, 327, 129-156. https://doi.org/10.1007/s10479-021-04048-6
  • Vafadarnikjoo, A., Mishra, N., Govindan, K., & Chalvatzis, K. (2018). Assessment of consumers’ motivations to purchase a remanufactured product by applying fuzzy Delphi method and single valued neutrosophic sets. Journal of Cleaner Production, 196, 230–244. https://doi.org/10.1016/j.jclepro.2018.06.037
  • Vafadarnikjoo, A., & Scherz, M. (2021). A hybrid neutrosophic-grey analytic hierarchy process method: decision-making modelling in uncertain environments. Mathematical Problems in Engineering, 2021, Article 1239505. https://doi.org/10.1155/2021/1239505
  • Vilasan, R. T., & Kapse, V. S. (2021). Evaluation of the prediction capability of AHP and F_AHP methods in flood susceptibility mapping of Ernakulam District (India). Natural Hazards, 112, 1767–1793. https://doi.org/10.21203/rs.3.rs-655658/v1
  • Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Multispace Multistruct, 4, 410–413.
  • Wu, X., Wang, H. J., Saito, Y., Syvitski, J., Bi, N., Yang, Z., Xu, J. P., & Guan, W. (2022). Boosting riverine sediment by artificial flood in the Yellow River and the implication for delta restoration. Marine Geology, 448, Article 106816. https://doi.org/10.1016/j.marg eo.2022.106816
  • Yang, X. L., Ding, J. H., & Hou, H. (2013). Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis. Natural Hazards, 68(2), 657–674. https://doi.org/10.1007/s11069-013-0642-x
  • Ye, J. (2017). Single-valued neutrosophic similarity measures based on cotangent function and their application in the faultdiagnosis of steam turbine. Soft Computing, 21, 817–825. https://doi.org/10.1007/s00500-015-1818-y
  • Yucesan, M., & Gul, M. (2021). Failure prioritization and control using the neutrosophic best and worst method. Granular Computing, 6, 435–449. https://doi.org/10.1007/s41066-019-00206-1
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zhang, W., Villarini, G., Vecchi, G. A., & Smith, J. A. (2018). Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature, 563, 384–8. https://doi.org/10.1038/s41586-018-0676-z

Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye)

Yıl 2024, Cilt: 10 Sayı: 2, 295 – 313, 18.07.2024

https://doi.org/10.21324/dacd.1407354

Öz

Today, knowing the spatial distribution of flood risk using GIS (Geographic Information Systems)-based MCDM (Multi-Criteria Decision Making) approaches has been a topic addressed by many researchers. In this context, the current study focuses on the spatial distribution of flood risk using the N-AHP (Neutrosophic Analytical Hierarchy Process)-based GIS approach. The Melet Basin (Türkiye) is a case study for the suggested methodology. Four decision-makers used linguistic phrases to compare and assess the flood criteria during the method’s application phase. The opinions of the decision makers were combined with the N-AHP, and the criteria were weighted. The results determined that precipitation, distance from the river, drainage density, land use, and slope were the most important factors affecting the flood and contributed approximately 74%. Apart from this, it has been observed that 10% of the basin is in the high and very high flood risk classes, and these risky areas overlap with the flood points of past periods. The proposed approach and findings are anticipated to have theoretical and practical implications.

Anahtar Kelimeler

Neutrosophic Set, MCDM-GIS, AHP, Flood Risk, Melet Basin, Türkiye

Kaynakça

  • Abdel-Basset, M., Mohamed, M., & Smarandache, F. (2018a). An extension of neutrosophic AHP–SWOT analysis for strategic planning and decision-making. Symmetry, 10, Article 116. https://doi.org/10.3390/sym10040116
  • Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018b). A hybrid approach of neutrosophic sets and DEMATEL method for developing suppliers election criteria. Design Automation for Embedded Systems, 22, 257–278. https://doi.org/10.1007/s10617-018-9203-6
  • Ahmad, S. S., & Simonovic, S. P. (2011). A three-dimensional fuzzy methodology for flood risk analysis. Journal Flood Risk Management, 4, 53–74. https://doi.org/10.1111/j.1753-318X.2011.01090.x
  • Arabameri, A., Rezaei, K., Cerdà, A., Conoscenti, C., & Kalantari, Z. (2019). A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of the Total Environment, 660, 443–458. https://doi.org/10.1016/j.scitotenv.2019.01.021
  • Arca, D., & Yalçın, F. (2023). Production of flood risk maps of İnebolu Basin using different fuzzy analytic hierarchy process methods. Journal of Disaster and Risk, 6(1), 70-83. https://doi.org/10.35341/afet.1137083
  • Aydın, M. C., & Birincioğlu, E. S. (2022). Flood risk analysis using gis-based analytical hierarchy process: a case study of Bitlis Province. Applied Water Science, 12, Article 122. https://doi.org/10.1007/s13201-022-01655-x
  • Cai, S., Fan, J., & Yang, W. (2021). Flooding risk assessment and analysis based on GIS and the TFN-AHP method: a case study of Chongqing, China. Atmosphere, 12(5), Article 623. https://doi.org/10.3390/atmos12050623
  • Cai, T., Li, X., Ding, X., Wang, J., & Zhan, J. (2019). Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. International Journal of Disaster Risk Reduction, 35, Article 101077. https://doi.org/10.1016/j.ijdrr.2019.101077
  • Chen, Y., Zhou, H., Zhang, H., Du, G., & Zhou, J. (2015). Urban flood risk warning under rapid urbanization. Environmental Research, 139, 3-10. https://doi.org/10.1016/j.envres.2015.02.028
  • Das, S. (2019). Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sensing Applications: Society and Environment, 14, 60–74. https://doi.org/10.1016/j.rsase.2019.02.006
  • Deli, I., & Subas, Y. (2014). Single valued neutrosophic numbers and their applications to multicriteria decision making problem. Neutrosophic Sets and Systems, 2(1), 1–13.
  • Ekmekçioğlu, Ö., Koç, K., & Özger, M. (2021). District based flood risk assessment in Istanbul using fuzzy analytical hierarchy process. Stochastic Environmental Research and Risk Assessment, 35, 617–637. https://doi.org/10.1007/s00477-020-01924-8
  • Foudi, S., Osés-Eraso, N., & Tamayo, I. (2015). Integrated spatial flood risk assessment: the case of Zaragoza. Land Use Policy, 42, 278–292. https://doi.org/10.1016/j.landusepol.2014.080.002
  • Ghosh, A., & Kar, S.K. (2018). Application of analytical hierarchyprocess (AHP) for flood risk assessment: a case study in Malda district of West Bengal, India. Natural Hazards, 94, 349–368. https://doi.org/10.1007/s11069-018-3392-y
  • Hagos, Y.G., Andualem, T.G., Yibeltal, M., & Mengie, M.A. (2022). Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Applied Water Science, 12(7), 1–18. https://doi.org/10.1007/s13201-022-01674-8
  • Hammami, S., Zouhri, L., Souissi, D., Souei, A., Zghibi, A., Marzougui, A., & Dlala, M. (2019). Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arabian Journal of Geoscience, 12, Article 653. https://doi.org/10.1007/s12517-019-4754-9
  • Hategekimana, Y., Yu, L., Nie, Y., Zhu, J., Liu, F., & Guo, F. (2018). Integration of multi-parametric fuzzy analytic hierarchy process and GIS along the UNESCO World Heritage: a flood hazard index, Mombasa County, Kenya. Natural Hazards, 92, 1137–1153. https://doi.org/10.1007/s11069-018-3244-9
  • Hatipoğlu, İ.K. (2017). Applied geomorphology of the lower and middle Melet River Melet, Ordu [Doktora Tezi, Ondokuz Mayıs University]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Jun, K-S., Chung, E-S., Kim, Y-G., & Kim, Y. (2013). A fuzzy multi-criteria approach toflood risk vulnerability in South Korea by considering climate change impacts. Expert Systems with Applications, 40, 1003–1013. https://doi.org/10.1016/j.eswa.2012.08.013
  • Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., & Nasseri, M. (2019). A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. Journal of Hydrology, 572, 17–31. https://doi.org/10.1016/j.jhydrol.2019.02.034
  • Kaur, G., & Garg, H. (2022). A new method for image processing using generalized linguistic neutrosophic cubic aggregation operator. Complex and Intelligent Systems, 8, 4911–4937. https://doi.org/10.1007/s40747-022-00718-5
  • Keskin, İ. (2011). 1/100.000 scale Türkiye geological maps Perşembe-F39 and Giresun-G39 sheets. MTA Publication.
  • Lai, C., Chen, X., Chen, X., Wang, Z., Wu, X., & Zhao, S. (2015). A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory. Natural Hazards, 77, 1243–1259. https://doi.org/10.1007/s11069-015-1645-6
  • Lappas, I., & Kallioras, A. (2019). Flood susceptibility assessment through GIS-based multi-criteria approach and analytical hierarchy process (AHP) in a River Basin in Central Greece. International Research Journal of Engineering and Technology, 6(3), 738–751.
  • Li, C., Chai, Y., Yang, L., & Li, H. (2016). Spatio-temporal distribution of flooddisastersandanalysis of influencingfactors in Africa. Natural Hazards, 82, 721–31. https://doi.org/10.1007/s11069-016-2181-8
  • Liu, Z., Merwade, V., & Jafarzadegan, K. (2019). Investigating the role of model structure and surface roughness in generating food in undation extents using one- and two-dimensional hydraulic models. Journal of Flood Risk Management, 12(1), Article 12347. https://doi.org/10.1111/jfr3.12347
  • Lu, Y., He, T., Xu, X., & Qiao, Z. (2021). Investigation the robustness of standard classification methods for defining urban heat islands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 11386–11394. https://doi.org/10.1109/JSTARS.2021.3124558
  • Lyu, H. M., Zhou, W. H., Shen, S. L., & Zhou, A. N. (2020). Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustainable Cities and Society, 56, Article 102103. https://doi.org/10.1016/j.scs.2020.102103
  • Mishra, K., & Sinha, R. (2020). Flood risk assessment in the Kosimega fan using multi-criteria decision analysis: a hydro-geomorphic approach. Geomorphology, 350, Article 106861. https://doi.org/10.1016/j.geomorph.2019.106861
  • Morea, H., & Samanta, S. (2020). Multi-criteria decision approach to identify flood vulnerability zones using geospatial technology in the kemp-welch catchment, Central Province. Applied Geomatics, 12(4), 427–440. https://doi.org/10.1007/s12518-020-00315-6
  • Mudashiru, R. B., Sabtu, N., Abdullah, A., Saleh, A., & Abustan, I. (2022a). Optimality of flood influencing factors for flood hazard mapping: an evaluation of two multi-criteria decision-making methods. Journal of Hydrology, 612, Article 128055. https://doi.org/10.1016/j.jhydrol.2022.128055
  • Mudashiru, R. B., Sabtu, N., Abdullah, R., Saleh, A., & Abustan, İ. (2022b). A comparison of three multi-criteria decision-making models in mapping flood hazard areas of Northeast Penang, Malaysia. Natural Hazards, 112, 1903–1939. https://doi.org/10.1007/s11069-022-05250-w
  • Negese, A., Worku, D., Shitaye, A., & Getnet, H. (2022). Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot district, Northwestern Ethiopia. Applied Water Science, 12, 1–21, https://doi.org/10.1007/s13201-022-01772-7
  • Nsangou, D., Kpoumié, A., Mfonka, Z., Bateni, S. M., Ngouh, A. N., & NdamNgoupayou, J. R. (2022). The mfoundi watershed at yaoundé in the humid tropical zone of Cameroon: a case study of urban flood susceptibility mapping. Earth System and Environment, 6, 99-120. https://doi.org/10.1007/s41748-021-00276-9
  • Özşahin, E. (2022). Havsa (Edirne) ilçesinde taşkın tehlike duyarlılığının değerlendirilmesi. In M. Tan, & T. Erdoğan (Eds). Her Yönüyle Havsa, (pp.711-732). Paradigma Akademi Yayınları.
  • Pappenberger, F., Matgen, P., Beven, K. J., Henry, J. B., & Pfister, L. (2006). Influence of uncertain boundary conditions and model structure on flood in undation predictions. Advances in Water Resources, 29(10), 1430–1449. https://doi.org/10.1016/j.advwatres.2005.11.012
  • Penki, R., Basina, S. S., & Tanniru, S. R. (2022). Application of geographical information system-based analytical hierarchy process modeling for flood susceptibility mapping of Krishna District in Andhra Pradesh. Environmental Science and Pollution Research, 30, 99062–99075. https://doi.org/10.1007/s11356-022-22924-x
  • Saaty, T.L. (1980). The Analytic Hierarchy Process. McGraw-Hill.
  • Saaty, T.L. (2005). The oryand applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS Publications.
  • Smarandache, F. (1999). A unifying field in logic. Neutrosophy: neutrosophic probability, set, and logic. American ResearchPress.
  • Souissi, D., Souie, A., Sebei, A., Mahfoudhi, R., Zghibi, A., Zouhri, L., Amiri, W., & Ghanmi, M. (2022). Flood hazard mapping and assessment using fuzzy analytic hierarchy process and GIS techniques in Takelsa, Northeast Tunisia. Arabian Journal of Geoscience, 15, Article 1405. https://doi.org/10.1007/s12517-022-10541-4
  • Stanujkić, D., Karabašević, D., Popović, G., Pamučar, D., Stević, Ž., Zavadskas, E. K., & Smarandache, F. (2021). A single-valued neutrosophic extension of the EDAS method. Axioms, 10(4), Article 245. https://doi.org/10.3390/axioms10040245
  • Sümengen, M. (2013). 1/100.000 scale Türkiye geological maps Giresun-H40 sheet. MTA Publication.
  • Şenol, C. (2019a). Land use and spatial change in the Melet Stream Basin [Doktora Tezi, Marmara Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Şenol, C. (2019b). The situation of the spatial change in the lower part of the Melet River Basin is affected by potential flooding. International Journal of Geography and Geography Education, 40, 439-453. https://doi.org/10.32003/iggei.571481
  • Taş, M.A., & Yanık, M.E. (2022). Flood risk analysis of behzat river (Tokat) basin with analytic hierarchy process (AHP) method. Erzincan University Journal of Social Sciences Institute, 15(2), 185-199. https://doi.org/10.46790/erzisosbil.1221464
  • Tehrany, M. S., Lee, M. J., Pradhan, B., Jebur, M. N., & Lee, S. (2014). Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences, 72(10), 4001–4015. https://doi.org/10.1007/s12665-014-3289-3
  • Tella, A., & Balogun, A. L. (2020). Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria. Natural Hazards, 104, 2277–2306. https://doi.org/10.1007/s11069-020-04272-6
  • Toosi, A. S., Calbimonte, G. H., Nouri, H., & Alaghmand, S. (2019). River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: a case study. Jounal of Hydrology, 574, 660–671. https://doi.org/10.1016/j.jhydrol.2019.04.072
  • Tucker, C. (1979). Red and photographic infrared linear combination for monitoring vegetation of Environment. Remote Sensing of Environment, 8, 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  • Vaddiraju, S. C., & Talari, R. (2022). Urban flood susceptibility analysis of Saroor Nagar Watershed of Indiausing Geomatics-based multi-criteria analysis framework. Environmental Science and Pollution Research, 30, 107021–107040. https://doi.org/10.1007/s11356-022-24672-4
  • Vafadarnikjoo, A. (2020). Decision analysis in the UK energy supply chain risk management: Tools development and application [Doctoral thesis, University of East Anglia]. https://ueaeprints.uea.ac.uk/id/eprint/77909
  • Vafadarnikjoo, A., BadriAhmadi, H., Liou, J. J. H., Botelho, T., & Chalvatzis, K. (2021). Analyzing block chain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process. Annals of Operation Research, 327, 129-156. https://doi.org/10.1007/s10479-021-04048-6
  • Vafadarnikjoo, A., Mishra, N., Govindan, K., & Chalvatzis, K. (2018). Assessment of consumers’ motivations to purchase a remanufactured product by applying fuzzy Delphi method and single valued neutrosophic sets. Journal of Cleaner Production, 196, 230–244. https://doi.org/10.1016/j.jclepro.2018.06.037
  • Vafadarnikjoo, A., & Scherz, M. (2021). A hybrid neutrosophic-grey analytic hierarchy process method: decision-making modelling in uncertain environments. Mathematical Problems in Engineering, 2021, Article 1239505. https://doi.org/10.1155/2021/1239505
  • Vilasan, R. T., & Kapse, V. S. (2021). Evaluation of the prediction capability of AHP and F_AHP methods in flood susceptibility mapping of Ernakulam District (India). Natural Hazards, 112, 1767–1793. https://doi.org/10.21203/rs.3.rs-655658/v1
  • Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Multispace Multistruct, 4, 410–413.
  • Wu, X., Wang, H. J., Saito, Y., Syvitski, J., Bi, N., Yang, Z., Xu, J. P., & Guan, W. (2022). Boosting riverine sediment by artificial flood in the Yellow River and the implication for delta restoration. Marine Geology, 448, Article 106816. https://doi.org/10.1016/j.marg eo.2022.106816
  • Yang, X. L., Ding, J. H., & Hou, H. (2013). Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis. Natural Hazards, 68(2), 657–674. https://doi.org/10.1007/s11069-013-0642-x
  • Ye, J. (2017). Single-valued neutrosophic similarity measures based on cotangent function and their application in the faultdiagnosis of steam turbine. Soft Computing, 21, 817–825. https://doi.org/10.1007/s00500-015-1818-y
  • Yucesan, M., & Gul, M. (2021). Failure prioritization and control using the neutrosophic best and worst method. Granular Computing, 6, 435–449. https://doi.org/10.1007/s41066-019-00206-1
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zhang, W., Villarini, G., Vecchi, G. A., & Smith, J. A. (2018). Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston. Nature, 563, 384–8. https://doi.org/10.1038/s41586-018-0676-z

Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Doğal Afetler
BölümAraştırma Makalesi
Yazarlar

Murat Fıçıcı ARDAHAN ÜNİVERSİTESİ 0000-0003-1508-7738 Türkiye

Yayımlanma Tarihi18 Temmuz 2024
Gönderilme Tarihi20 Aralık 2023
Kabul Tarihi24 Mart 2024
Yayımlandığı Sayı Yıl 2024Cilt: 10 Sayı: 2

Kaynak Göster

APAFıçıcı, M. (2024). Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye). Doğal Afetler Ve Çevre Dergisi, 10(2), 295-313. https://doi.org/10.21324/dacd.1407354
AMAFıçıcı M. Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye). Doğ Afet Çev Derg. Temmuz 2024;10(2):295-313. doi:10.21324/dacd.1407354
ChicagoFıçıcı, Murat. “Flood Risk Assessment Using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS Techniques in the Melet Basin (Türkiye)”. Doğal Afetler Ve Çevre Dergisi 10, sy. 2 (Temmuz 2024): 295-313. https://doi.org/10.21324/dacd.1407354.
EndNoteFıçıcı M (01 Temmuz 2024) Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye). Doğal Afetler ve Çevre Dergisi 10 2 295–313.
IEEEM. Fıçıcı, “Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye)”, Doğ Afet Çev Derg, c. 10, sy. 2, ss. 295–313, 2024, doi: 10.21324/dacd.1407354.
ISNADFıçıcı, Murat. “Flood Risk Assessment Using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS Techniques in the Melet Basin (Türkiye)”. Doğal Afetler ve Çevre Dergisi 10/2 (Temmuz 2024), 295-313. https://doi.org/10.21324/dacd.1407354.
JAMAFıçıcı M. Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye). Doğ Afet Çev Derg. 2024;10:295–313.
MLAFıçıcı, Murat. “Flood Risk Assessment Using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS Techniques in the Melet Basin (Türkiye)”. Doğal Afetler Ve Çevre Dergisi, c. 10, sy. 2, 2024, ss. 295-13, doi:10.21324/dacd.1407354.
VancouverFıçıcı M. Flood risk assessment using Neutrosophic Analytical Hierarchy Process (N-AHP) and GIS techniques in the Melet Basin (Türkiye). Doğ Afet Çev Derg. 2024;10(2):295-313.

Download or read online: Click here