Gıda ve Enerji Üretimini Birleştiren Arazilerde Verimlilik Analizi: Komşuköy Agrivoltaik Çiftlik Modeli

Yıl 2024, Cilt: 58 Sayı: 3, 443 – 460, 22.07.2024

https://doi.org/10.51551/verimlilik.1430853

Öz

Amaç: Enerjisa Üretim ortaklığıyla İstanbul, Türkiye’de kurulan ilk yükseltilmiş sabit panel sistemine sahip Komşuköy Agrivoltaik Çiftlik sahasında gerçekleştirilen tarım ve enerji üretim faaliyetlerini inceleyen bu çalışmanın temel amacı, arazinin ikili kullanımı (elektrik ve biyokütle üretimi) sonucunda arazi verimliliğindeki değişimi ortaya koymaktır.
Yöntem: Arazi verimliliğinin hesaplamasında esas alınan yöntem “arazi eş değer oranı (LER)”dır.
Bulgular: Agrivoltaik sistemde arazi eşdeğer oranının (LER) farklı bitki türlerine göre 1,33 ve 3,30 arasında değiştiği; buna göre agrivoltaik sistemlerin, gıda ve elektrik üretiminin ayrı arazilerde gerçekleştirildiği durumlara göre %33-%230 arasında daha az arazi varlığına ihtiyaç duyduğu tespit edilmiştir.
Özgünlük: Komşuköy Agrivoltaik Çiftlik, Türkiye’de sabit çift-yüzlü panel sistemi ile tasarlanmış öncül bir agrivoltaik uygulama alanıdır. Ülkemizde agrivoltaik sistemlerin performansını verimlilik yaklaşımı ile değerlendiren ilk araştırma olarak diğer pilot çalışmalarından temel farkı; biyoçeşitlilik ve ilaçsız tarıma yönelik sürdürülebilir tarım tekniklerine dayanan bir sistem üzerine odaklanmasıdır. Literatür, çoğunlukla konvensiyonel tarım tekniklerine ve monokültür ürünlere odaklanmış olup bu çalışma, sürdürülebilir bir çiftlik modeli örneği sunmaktadır. Ayrıca önceki agrivoltaik araştırmalar arasında henüz çalışılmamış bir ürün grubu olan tıbbi ve aromatik bitki örneğinin incelenmesi sonucunda bu ürün grubunun yetiştiriciliği hakkında literatüre önemli bir katkı sunulmaktadır.

Anahtar Kelimeler

Sürdürülebilir Tarım, Yenilenebilir Enerji, Agrivoltaik Sistemler (TarımGES), Arazi Verimliliği, Arazi Eşdeğer Oranı (LER)

Etik Beyan

Yazarlar tarafından bu çalışmada bilimsel ve etik ilkelere uyulduğu ve yararlanılan tüm çalışmaların kaynakçada belirtildiği beyan edilmiştir.

Destekleyen Kurum

Bu çalışmada TarımGES (agrivoltaik sistem) kurulumu aşamasındaki tedarik süreçlerinde (panel, konstrüksiyon, batarya, bağlantı malzemeleri vb.) Enerjisa Üretim tarafından fon desteği sağlanmıştır.

Teşekkür

Yazarlar, çalışmadaki bazı üç boyutlu grafiklerin oluşturulmasında verdiği destekten dolayı ODTÜ Mimarlık Bölümünden Dilara Güney’e ve verilerin bilimsel alanda değerlendirilmesi için göstermiş olduğu çabadan dolayı Enerjisa Üretim’den Mehmet Evren Eynehan’a teşekkür eder.

Kaynakça

  • Ağır, S., Derin-Güre, P. ve Şentürk, B. (2023a). “Farmers’ Perspectives on Challenges and Opportunities of Agrivoltaics in Turkiye: An Institutional Perspective”, Renewable Energy, 212, 35-49. DOI: 10.1016/j.renene.2023.04.137
  • Ağır, S., Güre, P.D. ve Şentürk, B. (2023b). “Türkiye’de Tarım ve Enerjinin Kesişimi, Tarımfv: Güncel Yazın Işığında Bir Ön Değerlendirme”, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 41(Tarım Özel Sayısı), 1-22, DOI: 10.17065/huniibf.1250434
  • Ahmed, M.S., Khan, M.R., Haque, A. ve Khan, M.R. (2022). Agrivoltaics Analysis in A Techno-Economic Framework: Understanding Why Agrivoltaics on Rice Will Always Be Profitable”i Applied Energy, 323, 119560. Altieri, M.A. (1998). “Ecological Impacts of Industrial Agriculture and the Possibilities for Truly Sustainable Farming”, Monthly Review, Vol 50, No. 3: July-August, https://doi.org/10.14452/MR-050-03-1998-07
  • Amaducci, S., Yin, X. ve Colauzzi, M. (2018). “Agrivoltaic Systems to Optimize Land Use for Electric Energy Production”, Applied Energy, 220, 545–561. DOI: 10.1016/j.apenergy.2018.03.081
  • Andrew, A. C., Higgins, C. W., Smallman, M. A., Graham, M., ve Ates, S. (2021). “Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System”, Frontiers in Sustainable Food Systems, 5, 659175.
  • Barron-Gafford, G.A., Pavao-Zuckerman, M.A., Minor, R.L., Sutter, L.F., Barnett-Moreno, I., Blackett, D.T., Thompson, M, Dimond, K, Gerlak, A.K., Nabhan, G.K. ve Macknick, J.E. (2019). “Agrivoltaics Provide Mutual Benefits Across the Food–Energy–Water Nexus in Drylands”, Nature Sustainability, 2(9), 848-855.
  • Beck, M., Bopp, G., Goetzberger, A., Obergfell, T., Reise, C. ve Schindele, S. (2012). “Combining PV and Food Crops to Agrophotovoltaic–Optimization of Orientation and Harvest”, Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, Frankfurt, Germany.
  • BM. (2023). “General Assembly, Transforming our world: the 2030 Agenda for Sustainable Development”, 25th September 2015, United Nations.
  • Casares de la Torre, F.J., Varo, M., López-Luque, R., Ramírez-Faz, J., Fernández-Ahumada, L.M. (2022). “Design and Analysis of A Tracking / Backtracking Strategy for PV Plants with Horizontal Trackers after Their Conversion to Agrivoltaic Plants”, Renewable Energy, 187, 537-550.
  • Elia Campana, P., Stridh, B., Amaducci, S. ve Colauzzi, M. (2021). “Optimization of Vertically Mounted Agrivoltaic Systems”, Journal of Clear Production, 325, 1-18.
  • Coşgun, A.E. (2021). “The Potential of Agrivoltaic Systems in TURKEY”, Energy Reports, 7(3), 105-111.
  • Dinesh, H. ve Pearce, J.M. (2016) “The Potential of Agrivoltaic Systems”, Renewable and Sustainable Energy Reviews, 54, 299-308. DOI: 10.1016/j.rser.2015.10.024
  • DOE-USA. (2022). “DOE Announces $8 Million to Integrate Solar Energy Production with Farming”, https://www.energy.gov/articles/doe-announces-8-million-integrate-solar-energy-production-farming, (Erişim Tarihi: 5 Ocak 2024).
  • Dollinger, J., Jose, S. (2018). “Agroforestry for Soil Health”, Agroforestry systems, 92, 213-219.
  • Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A. ve Ferard, Y. (2011). “Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes”, Renewable energy, 36(10), 2725-2732.
  • Elamri, Y., Cheviron, B., Lopez, J.M., Dejean, C. ve Belaud, G. (2018). “Water Budget and Crop Modelling for Agrivoltaic Systems: Application to Irrigated Lettuces”, Agricultural Water Management, 208, 440-453.
  • Elia Campana, P., Stridh, B., Amaducci, S. ve Colauzzi, M. (2021). “Optimisation of Vertically Mounted Agrivoltaic Systems”, Journal of Cleaner Production, 325, 129091. FAO. (2019). “Transforming Food and Agriculture to Achieve the SDGs: 20 Interconnected Actions to Guide Decision-Makers”, Rome. 74. Food and Agriculture Organization of the United Nations.
  • Goetzberger, A. ve Zastrow, A. (1982). “On the Coexistence of Solar-Energy Conversion and Plant Cultivation”, International Journal of Solar Energy, 1(1), 55-69. DOI: 10.1080/01425918208909875
  • Gruntman, M., Groß, D., Májeková, M. ve Tielbörger, K. (2017). “Decision-Making in Plant Under Competition”, Nature Communications, 8, 2235. DOI: 10.1038/s41467-017-02147-2
  • Horrigan, L., Lawrence, R.S. ve Walker, P. (2002). “How Sustainable Agriculture Can Address the Environmental and Human Health Harms of Industrial Agriculture”, Environmental Health Perspectives, 110, 445-456.
  • Hudelson, T. ve Lieth, J.H. (2021) “Crop Production in the Partial Shade of Solar Photovoltaic Panels on Trackers”, AIP Conference Proceedings. American Institute of Physics Inc. DOI: 10.1063/5.0055174
  • Katsikogiannis, O.A., Ziar, H. ve Isabella, O. (2022). “Integration of Bifacial Photovoltaics in Agrivoltaic Systems: A Synergistic Design Approach”, Applied Energy, 309, 118475.
  • Kostik, N., Bobyl, A., Rud, V. ve Salamov, I. (2020). “The Potential of Agrivoltaic Systems in the Conditions of Southern Regions of Russian Federation”, IOP Conference Series: Earth and Environmental Science, 578(1), 012047.
  • Marrou, H., Wéry, J., Dufour, L. Ve Dupraz, C. (2013). “Productivity and Radiation Use Efficiency of Lettuces Grown in the Partial Shade of Photovoltaic Panels”. European Journal of Agronomy, 44, 54-66.
  • Mead, R. ve Willey, R.W. (1980). “The Concept of a “Land Equivalent Ratio” and Advantages in Yields from Intercropping”, Experimental Agriculture, 16(3), 217-228.
  • Menezes, K.M., Silva, D.K., Gouveia, G.V., da Costa, M. M., Queiroz, M.A. ve Yano-Melo, A.M. (2019). “Shading and Intercropping with Buffelgrass Pasture Affect Soil Biological Properties in the Brazilian Semi-Arid Region”, Catena, 175, 236-250.
  • Newman, S.M. (1986). “A Pear and Vegetable Interculture System: Land Equivalent Ratio, Light Use Efficiency and Productivity”, Experimental Agriculture, 22(4), 383–392.
  • Ortiz-Bobea, A., Ault, T.R., Carrillo, C.M., Chambers, R.G. ve Lobell, D.B. (2021). “Anthropogenic Climate Change Has Slowed Global Agricultural Productivity Growth”, Nature Climate Change, 11(4), 306-312.
  • Padilla, J., Toledo, C. ve Abad, J. (2022). “Enovoltaics: Symbiotic Integration of Photovoltaics in Vineyards”, Frontiers in Energy Research, 10, 1007383. DOI: 10.3389/fenrg.2022.1007383.
  • Peel, M.C., Finlayson, B.L., McMahon, T.A. (2007). “Updated world map of the Köppen-Geiger climate classification”, Hydrology and Earth System Sciences, 11, 1633-1644.
  • Pingali, P.L. (2012). “Green Revolution: Impacts, Limits, and the Path ahead”, Proceedings of the National Academy of Sciences of the United States of America, 12302-12308. DOI: 10.1073/pnas.0912953109
  • Rezai, S., Etemadi, N., Nikbakht, A., Yousefi, M., Majidi, M.M. (2018). “Effect of Light Intensity on Leaf Morphology, Photosynthetic Capacity, and Chlorophyll Content in Sage (Salvia officinalis L.)”, Horticultural Science and Technology, 36, 46-57.
  • Riaz, M.H., Imran, H., Younas, R. ve Butt, N.Z. (2021). “The Optimization of Vertical Bifacial Photovoltaic Farms for Efficient Agrivoltaic Systems”, Solar Energy, 230, 1004-1012.
  • Rossi, R. “Small Farms' Role in the EU Food System”, European Parliamentary Research Service (EPRS), https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/733630/EPRS_BRI(2022)733630_EN.pdf, (Erişim tarihi: 22.02.2024).
  • Schindele, S., Trommsdorff, M., Schlaak, A., Obergfell, T., Bopp, G., Reise, C., Braun, C., Weselek, A., Bauerle, A., Högy, P., Goetzberger, A. ve Weber, E. (2020). Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Applied Energy, 265, 114737.
  • Sekiyama, T. ve Nagashima, A. (2019) “Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop”, Environments, 6(6), 65.
  • Şeker, S., Çakaloğulları, U., Bayram, E., Tatar, Ö. (2023). “Production of Sage, Oregano and Rosemary under Shading Conditions and the Effects of Light on Growth and Essential Oil Properties”, Industrial Crops and Products, 193, 116254.
  • Şentürk, B. (2023). “Tarımsal Arazilerin İkili Kullanımında Gelir-Gider Analizi: Türkiye TarımGES Örneği”, Türk Tarım ve Doğa Bilimleri Dergisi, 10(4), 1147-1155.
  • Time, A., Gomez‐Casanovas, N., Mwebaze, P., Apollon, W., Khanna, M., DeLucia, E.H., Bernacchi, C.J. (2023). “Conservation Agrivoltaics for Sustainable Food‐Energy Production”, Plants, People, Planet, DOI: 10.1002/ppp3.10481
  • Trommsdorff, M., Hopf, M., Hörnle, O., Berwind, M., Schindele, S. ve Wydra, K. (2023). “Can Synergies in Agriculture through An İntegration of Solar Energy Reduce the Cost of Agrivoltaics? An Economic Analysis in Apple Farming”, Applied Energy, 350, 121619.
  • Trommsdorff, M., Kang, J., Reise, C., Schindele, S., Bopp, G., Ehmann, A., Weselek, A., Högy, P. ve Obergfell, T. (2021). Combining Food and Energy Production: Design of An Agrivoltaic System Applied in Arable and Vegetable Farming in Germany. Renewable and Sustainable Energy Reviews, 140, 110694.
  • Trommsdorff, M., Vorast, M., Durga, N. ve Padwardhan, S. (2020). Potential of Agrivoltaics to Contribute to Socio-Economic Sustainability: A Case Study in Maharashtra. India AgriVoltaics 2020, 14-16.
  • Trommsdorff, M. “An Economic Analysis of Agrophotovoltaics: Opportunities, Risks and Strategies towards a More Efficient Land Use”, Econstor, https://www.econstor.eu/handle/10419/150976, (Erişim tarihi: 15.01.2024)
  • Turan, N. (2021) “Agrivoltaics and Their Effects on Crops: A Review”, Journal of Muş Alparslan University Agricultural Production and Technologies, 1(2), 39-47.
  • Valle, B., Simonneau, T., Sourd, F., Pechier, P., Hamard, P., Frisson, T., Ryckewaert, M. ve Christophe, A. (2017). “Increasing the Total Productivity of A Land by Combining Mobile Photovoltaic Panels and Food Crops”, Applied Energy, 206, 1495-1507.
  • Vijayan, R.A., Sivanarul, J. ve Varadharajaperumal, M. (2021). “Optimizing the Spectral Sharing in A Vertical Bifacial Agrivoltaics Farm”, Journal of Physics D: Applied Physics, 54(30). DOI: 10.1088/1361-6463/abfbae
  • Wagner, M., Lask, J., Kiesel, A., Lewandowski, I., Weselek, A., Högy, P., Trommsdorff, M., Schnaiker, M-A. ve Bauerle, A. (2023). “Agrivoltaics: The Environmental Impacts of Combining Food Crop Cultivation and Solar Energy Generation”, Agronomy, 13(2), 299.
  • Weselek, A., Bauerle, A., Hartung, J., Zikeli, S., Lewandowski, I. ve Högy, P. (2021). “Agrivoltaic System Impacts on Microclimate and Yield of Different Crops within An Organic Crop Rotation in A Temperate Climate”, Agronomy for Sustainable Development, 41(5), 59.
  • Willockx, B., Herteleer, B., Cappelle, J. (2020) “Techno-Economic Study of Agrovoltaic Systems FOCUSİNG on orchard Crops”, 1761-1766. DOI: 10.4229/EUPVSEC20202020-6DO.14.2
  • Zervoudakis, G., Salahas, G., Kaspiris, G. ve Konstantopoulou, E. (2012). “Influence of light intensity on growth and physiological characteristics of common sage (Salvia officinalis L.)”, Brazilian Archives of Biology and Technology, 55, 89-95.

The Analysis on Dual Land Use Efficiency: Integrating Food and Energy Production in A Case Study of the Komşuköy Agrivoltaic Farm Model

Yıl 2024, Cilt: 58 Sayı: 3, 443 – 460, 22.07.2024

https://doi.org/10.51551/verimlilik.1430853

Öz

Purpose: The primary objective of this study is to elucidate the changes in land productivity resulting from the dual use of land (both electricity and biomass production) in the Komşuköy Agrivoltaic farm which is the first site with an elevated fixed-panel system in Istanbul, Türkiye, established in partnership with Enerjisa.
Methodology: The method employed in calculating land productivity is the “Land Equivalent Ratio (LER)”.
Findings: The land equivalent ratio (LER) in the Agrivoltaic system varies between 1,33 and 3,30 for different plant species. Accordingly, Agrivoltaic systems indicate a need for 33% to 230% less land compared to situations where food and electricity production are carried out on separate plots.
Originality: Komşuköy Agrivoltaic Farm is the first Agrivoltaic implementation designed with a fixed dual-sided panel system in Türkiye. Distinguishing itself from other pilot studies, this research is the preliminary one both for evaluating the performance of Agrivoltaic systems using a productivity approach in Türkiye and for focusing on biodiversity, natural inputs, and sustainable farming techniques for pesticide-free agriculture while most studies in the worlwide literature concentrate on conventional farming techniques and monoculture products, this research contributes as an example of a sustainable farm model, spesifically for providing a significant contribution on the cultivation of medicinal and aromatic plants.

Anahtar Kelimeler

Sustainable Agriculture, Renewable Energy, Agrivoltaic Systems (AgriPV), Land Productivity, Land Equivalent Ratio (LER)

Etik Beyan

It was declared by the author(s) that scientific and ethical principles have been followed in this study and all the sources used have been properly cited.

Destekleyen Kurum

Enerjisa has provided funding support for the procurement processes during the installation phase of AgriPV (agrivoltaic system), including panels, construction, batteries, connection materials, etc.

Teşekkür

The authors would like to thank Dilara Güney from Department of Architecture at METU for her support in creating some three-dimensional graphics in the study, and Mehmet Evren Eynehan from Enerjisa Üretim for his efforts in scientific evaluation of the data.

Kaynakça

  • Ağır, S., Derin-Güre, P. ve Şentürk, B. (2023a). “Farmers’ Perspectives on Challenges and Opportunities of Agrivoltaics in Turkiye: An Institutional Perspective”, Renewable Energy, 212, 35-49. DOI: 10.1016/j.renene.2023.04.137
  • Ağır, S., Güre, P.D. ve Şentürk, B. (2023b). “Türkiye’de Tarım ve Enerjinin Kesişimi, Tarımfv: Güncel Yazın Işığında Bir Ön Değerlendirme”, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 41(Tarım Özel Sayısı), 1-22, DOI: 10.17065/huniibf.1250434
  • Ahmed, M.S., Khan, M.R., Haque, A. ve Khan, M.R. (2022). Agrivoltaics Analysis in A Techno-Economic Framework: Understanding Why Agrivoltaics on Rice Will Always Be Profitable”i Applied Energy, 323, 119560. Altieri, M.A. (1998). “Ecological Impacts of Industrial Agriculture and the Possibilities for Truly Sustainable Farming”, Monthly Review, Vol 50, No. 3: July-August, https://doi.org/10.14452/MR-050-03-1998-07
  • Amaducci, S., Yin, X. ve Colauzzi, M. (2018). “Agrivoltaic Systems to Optimize Land Use for Electric Energy Production”, Applied Energy, 220, 545–561. DOI: 10.1016/j.apenergy.2018.03.081
  • Andrew, A. C., Higgins, C. W., Smallman, M. A., Graham, M., ve Ates, S. (2021). “Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System”, Frontiers in Sustainable Food Systems, 5, 659175.
  • Barron-Gafford, G.A., Pavao-Zuckerman, M.A., Minor, R.L., Sutter, L.F., Barnett-Moreno, I., Blackett, D.T., Thompson, M, Dimond, K, Gerlak, A.K., Nabhan, G.K. ve Macknick, J.E. (2019). “Agrivoltaics Provide Mutual Benefits Across the Food–Energy–Water Nexus in Drylands”, Nature Sustainability, 2(9), 848-855.
  • Beck, M., Bopp, G., Goetzberger, A., Obergfell, T., Reise, C. ve Schindele, S. (2012). “Combining PV and Food Crops to Agrophotovoltaic–Optimization of Orientation and Harvest”, Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, Frankfurt, Germany.
  • BM. (2023). “General Assembly, Transforming our world: the 2030 Agenda for Sustainable Development”, 25th September 2015, United Nations.
  • Casares de la Torre, F.J., Varo, M., López-Luque, R., Ramírez-Faz, J., Fernández-Ahumada, L.M. (2022). “Design and Analysis of A Tracking / Backtracking Strategy for PV Plants with Horizontal Trackers after Their Conversion to Agrivoltaic Plants”, Renewable Energy, 187, 537-550.
  • Elia Campana, P., Stridh, B., Amaducci, S. ve Colauzzi, M. (2021). “Optimization of Vertically Mounted Agrivoltaic Systems”, Journal of Clear Production, 325, 1-18.
  • Coşgun, A.E. (2021). “The Potential of Agrivoltaic Systems in TURKEY”, Energy Reports, 7(3), 105-111.
  • Dinesh, H. ve Pearce, J.M. (2016) “The Potential of Agrivoltaic Systems”, Renewable and Sustainable Energy Reviews, 54, 299-308. DOI: 10.1016/j.rser.2015.10.024
  • DOE-USA. (2022). “DOE Announces $8 Million to Integrate Solar Energy Production with Farming”, https://www.energy.gov/articles/doe-announces-8-million-integrate-solar-energy-production-farming, (Erişim Tarihi: 5 Ocak 2024).
  • Dollinger, J., Jose, S. (2018). “Agroforestry for Soil Health”, Agroforestry systems, 92, 213-219.
  • Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A. ve Ferard, Y. (2011). “Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes”, Renewable energy, 36(10), 2725-2732.
  • Elamri, Y., Cheviron, B., Lopez, J.M., Dejean, C. ve Belaud, G. (2018). “Water Budget and Crop Modelling for Agrivoltaic Systems: Application to Irrigated Lettuces”, Agricultural Water Management, 208, 440-453.
  • Elia Campana, P., Stridh, B., Amaducci, S. ve Colauzzi, M. (2021). “Optimisation of Vertically Mounted Agrivoltaic Systems”, Journal of Cleaner Production, 325, 129091. FAO. (2019). “Transforming Food and Agriculture to Achieve the SDGs: 20 Interconnected Actions to Guide Decision-Makers”, Rome. 74. Food and Agriculture Organization of the United Nations.
  • Goetzberger, A. ve Zastrow, A. (1982). “On the Coexistence of Solar-Energy Conversion and Plant Cultivation”, International Journal of Solar Energy, 1(1), 55-69. DOI: 10.1080/01425918208909875
  • Gruntman, M., Groß, D., Májeková, M. ve Tielbörger, K. (2017). “Decision-Making in Plant Under Competition”, Nature Communications, 8, 2235. DOI: 10.1038/s41467-017-02147-2
  • Horrigan, L., Lawrence, R.S. ve Walker, P. (2002). “How Sustainable Agriculture Can Address the Environmental and Human Health Harms of Industrial Agriculture”, Environmental Health Perspectives, 110, 445-456.
  • Hudelson, T. ve Lieth, J.H. (2021) “Crop Production in the Partial Shade of Solar Photovoltaic Panels on Trackers”, AIP Conference Proceedings. American Institute of Physics Inc. DOI: 10.1063/5.0055174
  • Katsikogiannis, O.A., Ziar, H. ve Isabella, O. (2022). “Integration of Bifacial Photovoltaics in Agrivoltaic Systems: A Synergistic Design Approach”, Applied Energy, 309, 118475.
  • Kostik, N., Bobyl, A., Rud, V. ve Salamov, I. (2020). “The Potential of Agrivoltaic Systems in the Conditions of Southern Regions of Russian Federation”, IOP Conference Series: Earth and Environmental Science, 578(1), 012047.
  • Marrou, H., Wéry, J., Dufour, L. Ve Dupraz, C. (2013). “Productivity and Radiation Use Efficiency of Lettuces Grown in the Partial Shade of Photovoltaic Panels”. European Journal of Agronomy, 44, 54-66.
  • Mead, R. ve Willey, R.W. (1980). “The Concept of a “Land Equivalent Ratio” and Advantages in Yields from Intercropping”, Experimental Agriculture, 16(3), 217-228.
  • Menezes, K.M., Silva, D.K., Gouveia, G.V., da Costa, M. M., Queiroz, M.A. ve Yano-Melo, A.M. (2019). “Shading and Intercropping with Buffelgrass Pasture Affect Soil Biological Properties in the Brazilian Semi-Arid Region”, Catena, 175, 236-250.
  • Newman, S.M. (1986). “A Pear and Vegetable Interculture System: Land Equivalent Ratio, Light Use Efficiency and Productivity”, Experimental Agriculture, 22(4), 383–392.
  • Ortiz-Bobea, A., Ault, T.R., Carrillo, C.M., Chambers, R.G. ve Lobell, D.B. (2021). “Anthropogenic Climate Change Has Slowed Global Agricultural Productivity Growth”, Nature Climate Change, 11(4), 306-312.
  • Padilla, J., Toledo, C. ve Abad, J. (2022). “Enovoltaics: Symbiotic Integration of Photovoltaics in Vineyards”, Frontiers in Energy Research, 10, 1007383. DOI: 10.3389/fenrg.2022.1007383.
  • Peel, M.C., Finlayson, B.L., McMahon, T.A. (2007). “Updated world map of the Köppen-Geiger climate classification”, Hydrology and Earth System Sciences, 11, 1633-1644.
  • Pingali, P.L. (2012). “Green Revolution: Impacts, Limits, and the Path ahead”, Proceedings of the National Academy of Sciences of the United States of America, 12302-12308. DOI: 10.1073/pnas.0912953109
  • Rezai, S., Etemadi, N., Nikbakht, A., Yousefi, M., Majidi, M.M. (2018). “Effect of Light Intensity on Leaf Morphology, Photosynthetic Capacity, and Chlorophyll Content in Sage (Salvia officinalis L.)”, Horticultural Science and Technology, 36, 46-57.
  • Riaz, M.H., Imran, H., Younas, R. ve Butt, N.Z. (2021). “The Optimization of Vertical Bifacial Photovoltaic Farms for Efficient Agrivoltaic Systems”, Solar Energy, 230, 1004-1012.
  • Rossi, R. “Small Farms' Role in the EU Food System”, European Parliamentary Research Service (EPRS), https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/733630/EPRS_BRI(2022)733630_EN.pdf, (Erişim tarihi: 22.02.2024).
  • Schindele, S., Trommsdorff, M., Schlaak, A., Obergfell, T., Bopp, G., Reise, C., Braun, C., Weselek, A., Bauerle, A., Högy, P., Goetzberger, A. ve Weber, E. (2020). Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Applied Energy, 265, 114737.
  • Sekiyama, T. ve Nagashima, A. (2019) “Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop”, Environments, 6(6), 65.
  • Şeker, S., Çakaloğulları, U., Bayram, E., Tatar, Ö. (2023). “Production of Sage, Oregano and Rosemary under Shading Conditions and the Effects of Light on Growth and Essential Oil Properties”, Industrial Crops and Products, 193, 116254.
  • Şentürk, B. (2023). “Tarımsal Arazilerin İkili Kullanımında Gelir-Gider Analizi: Türkiye TarımGES Örneği”, Türk Tarım ve Doğa Bilimleri Dergisi, 10(4), 1147-1155.
  • Time, A., Gomez‐Casanovas, N., Mwebaze, P., Apollon, W., Khanna, M., DeLucia, E.H., Bernacchi, C.J. (2023). “Conservation Agrivoltaics for Sustainable Food‐Energy Production”, Plants, People, Planet, DOI: 10.1002/ppp3.10481
  • Trommsdorff, M., Hopf, M., Hörnle, O., Berwind, M., Schindele, S. ve Wydra, K. (2023). “Can Synergies in Agriculture through An İntegration of Solar Energy Reduce the Cost of Agrivoltaics? An Economic Analysis in Apple Farming”, Applied Energy, 350, 121619.
  • Trommsdorff, M., Kang, J., Reise, C., Schindele, S., Bopp, G., Ehmann, A., Weselek, A., Högy, P. ve Obergfell, T. (2021). Combining Food and Energy Production: Design of An Agrivoltaic System Applied in Arable and Vegetable Farming in Germany. Renewable and Sustainable Energy Reviews, 140, 110694.
  • Trommsdorff, M., Vorast, M., Durga, N. ve Padwardhan, S. (2020). Potential of Agrivoltaics to Contribute to Socio-Economic Sustainability: A Case Study in Maharashtra. India AgriVoltaics 2020, 14-16.
  • Trommsdorff, M. “An Economic Analysis of Agrophotovoltaics: Opportunities, Risks and Strategies towards a More Efficient Land Use”, Econstor, https://www.econstor.eu/handle/10419/150976, (Erişim tarihi: 15.01.2024)
  • Turan, N. (2021) “Agrivoltaics and Their Effects on Crops: A Review”, Journal of Muş Alparslan University Agricultural Production and Technologies, 1(2), 39-47.
  • Valle, B., Simonneau, T., Sourd, F., Pechier, P., Hamard, P., Frisson, T., Ryckewaert, M. ve Christophe, A. (2017). “Increasing the Total Productivity of A Land by Combining Mobile Photovoltaic Panels and Food Crops”, Applied Energy, 206, 1495-1507.
  • Vijayan, R.A., Sivanarul, J. ve Varadharajaperumal, M. (2021). “Optimizing the Spectral Sharing in A Vertical Bifacial Agrivoltaics Farm”, Journal of Physics D: Applied Physics, 54(30). DOI: 10.1088/1361-6463/abfbae
  • Wagner, M., Lask, J., Kiesel, A., Lewandowski, I., Weselek, A., Högy, P., Trommsdorff, M., Schnaiker, M-A. ve Bauerle, A. (2023). “Agrivoltaics: The Environmental Impacts of Combining Food Crop Cultivation and Solar Energy Generation”, Agronomy, 13(2), 299.
  • Weselek, A., Bauerle, A., Hartung, J., Zikeli, S., Lewandowski, I. ve Högy, P. (2021). “Agrivoltaic System Impacts on Microclimate and Yield of Different Crops within An Organic Crop Rotation in A Temperate Climate”, Agronomy for Sustainable Development, 41(5), 59.
  • Willockx, B., Herteleer, B., Cappelle, J. (2020) “Techno-Economic Study of Agrovoltaic Systems FOCUSİNG on orchard Crops”, 1761-1766. DOI: 10.4229/EUPVSEC20202020-6DO.14.2
  • Zervoudakis, G., Salahas, G., Kaspiris, G. ve Konstantopoulou, E. (2012). “Influence of light intensity on growth and physiological characteristics of common sage (Salvia officinalis L.)”, Brazilian Archives of Biology and Technology, 55, 89-95.

Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sürdürülebilir Kalkınma, Tarım Ekonomisi, Yeşil Ekonomi
BölümAraştırma Makalesi
Yazarlar

Bilge Şentürk ORTA DOĞU TEKNİK ÜNİVERSİTESİ, GÜNEŞ ENERJİSİ UYGULAMA VE ARAŞTIRMA MERKEZİ 0000-0002-7380-7628 Türkiye

Duygu Kuzyaka ORTA DOĞU TEKNİK ÜNİVERSİTESİ, GÜNEŞ ENERJİSİ UYGULAMA VE ARAŞTIRMA MERKEZİ 0000-0002-8112-1837 Türkiye

Ömer Yalçın ORTA DOĞU TEKNİK ÜNİVERSİTESİ, GÜNEŞ ENERJİSİ UYGULAMA VE ARAŞTIRMA MERKEZİ 0009-0007-8453-6951 Türkiye

Uğur M. Akyıldız KOMŞUKÖY ÇİFTLİĞİ 0009-0008-2949-3482 Türkiye

Murat Eröz Enerjisa Üretim, Varlık Yönetimi ve Sürdürülebilirlik Birimi, 0000-0002-6328-7323 Türkiye

Talat Özden ORTA DOĞU TEKNİK ÜNİVERSİTESİ, GÜNEŞ ENERJİSİ UYGULAMA VE ARAŞTIRMA MERKEZİ 0000-0002-0781-2904 Türkiye

Yayımlanma Tarihi22 Temmuz 2024
Gönderilme Tarihi6 Şubat 2024
Kabul Tarihi4 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 58 Sayı: 3

Kaynak Göster

APAŞentürk, B., Kuzyaka, D., Yalçın, Ö., Akyıldız, U. M., vd. (2024). Gıda ve Enerji Üretimini Birleştiren Arazilerde Verimlilik Analizi: Komşuköy Agrivoltaik Çiftlik Modeli. Verimlilik Dergisi, 58(3), 443-460. https://doi.org/10.51551/verimlilik.1430853

Download or read online: Click here