Gümüş ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi ve Karakterizasyonu

Yıl 2024, Cilt: 53 Sayı: Özel Sayı 1, 180 – 188, 16.07.2024

https://doi.org/10.53471/bahce.1483062

Öz

Nanotechnology has become a rapidly developing multidisciplinary field of sciences. Efforts to benefit from nanotechnology have accelerated in adapting the increase in agricultural production to the rapid increase in population growth and the resulting food demand on a global scale. For this purpose, nanoproducts are increasingly used to increase agricultural productivity and product quality and to cope with environmental, biotic and abiotic stresses. In this study, Ag nanoparticles (AgNPs) and Cu nanoparticles (CuNPs) encapsulated with seed extracts of two grape varieties (Ekşi Kara and Gök Üzüm) were produced by the green synthesis method. Four different nanomaterials were synthesized by using silver nitrate (AgNO₃) in the synthesis of AgNPs and copper chloride (Cu₃(OH)₃Cl) in the synthesis of CuNPs. In the FTIR (Fourier transforms infrared spectroscopy) analysis of AgNPs and CuNPs, both loaded into the solution, as well as adsorbed grape seed extracts, were successfully incorporated into the nanoparticle (NPs) skeleton structure, and different functional groups emerged through surface interaction. It was confirmed by the release. In XRD analysis, it was observed that AgNPs and CuNPs formed crystal structures and spectra. The peaks were attributed to the tetragonal crystal structure and were considered as strong evidence of complex formation between the grape seed extract component in AgNPs and CuNPs. Determination of the morphological structures of NPs were characterized by TEM (Transmission electron microscopy). In the TEM analysis, it was determined that the NPs were spherical or spherical in shape and their sizes were in the range of 10-20 nm. It can be said that the produced AgNPs and CuNPs will be suitable for use in plant growth, biomedical, medical and pharmacological fields.

Anahtar Kelimeler

Grape seed extract, green synthesis, silver nanoparticles, copper nanoparticles

Kaynakça

  • Gazioğlu Şensoy, R.İ., F. Balta, R. Cangi 2009. Bazı sofralık üzüm çeşitlerinin Van ekolojik koşullarındaki etkili sıcaklık toplamı değerlerinin belirlenmesi. Harran Üniversitesi Ziraat Fakültesi Dergisi 13(3):49-59.
  • Gerami, Z. et al. 2022. The mechanisms involved in the synthesis of biogenic nanoparticles, in Nano-enabled Agrochemicals in Agriculture, Elsevier, pp:63-77.
  • Philip, D. 2009. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 73(2):374-381.
  • Singh, K.P., S. Jahagirdar, B.K. Sarma 2021. Emerging Trends in Plant Pathology, Springer.
  • Li, W., et al. 2009. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4(1):16-19.
  • Harikumar, P., A. Aravind 2016. Antibacterial activity of copper nanoparticles and copper nanocomposites against Escherichia coli bacteria. Int. J. Sci. 5(2):83-90.
  • Filippi, M. et al. 2019. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain, 142(7):1858-1875.
  • Jalaluddin, M. et al. 2019. Antimicrobial activity of Curcuma longa L. extract on periodontal pathogens. Journal of Pharmacy&Bioallied Sciences 11(Suppl 2):203.
  • Mali, S.C. et al. 2020. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports 27:e00518.
  • Mirzaei, S., A. Ghabooli, M. Mirzaei 2020. Botrytis cinerea, one of the most‎ destructive plant pathogens, as a potent‎ to produce silver nanoparticles. International Journal of Nanoscience and Nanotechnology 16(4):243-248.
  • Keshari, A. et al. 2021. Analyzing the phytochemistry and anti-oxidant property of fabricated silver nanoparticles using Catharanthus roseus leaf extract. Research Journal of Biotechnology 16:12.
  • Shankar, S.S., A. Ahmad, M. Sastry 2023-a. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress 19(6):1627-1631.
  • Balavijayalakshmi, J., V. Ramalakshmi 2017. Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. Journal of Applied Research and Technology 15(5):413-422.
  • Begum, N.A. et al. 2009. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids and surfaces B: Biointerfaces 71(1):113-118.
  • He, X., H. Deng, H.-M. Hwang 2019. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis 27(1):1-21.
  • Li, M. et al. 2016. Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Frontiers in Plant Science 7:615.
  • Kara, Z., A. Sabır, Ö. Eker 2019. Ancient grape Vitis vinifera L. cv ‘Ekşi Kara’ in Anatolia. Selcuk Journal of Agriculture and Food Sciences 32(3):416-423.
  • Güneş Çimen, C., et al. 2022. Enhancement of PCL/PLA Electrospun nanocomposite fibers comprising silver nanoparticles encapsulated with Thymus vulgaris L. molecules for antibacterial and anticancer activities. In ACS Biomaterials Science & Engineering, pp:3717-3732.
  • Kamçi, H., T. Recep, H.U. Çelebioğlu 2022. Antibacterial activity of copper nanoparticles synthesized by using Peumus boldus leaf extract. Avrupa Bilim ve Teknoloji Dergisi 2022(36):139-142.
  • Kara, Z., et al. 2021. Silver nanoparticles synthesis by grape seeds (Vitis vinifera L.) extract and rooting effect on grape cuttings. Erwerbs-Obstbau 63(1):1-8.
  • Güneş Çimen, C. et al. 2022. Enhancement of PCL/PLA electrospun nanocomposite fibers comprising silver nanoparticles encapsulated with Thymus vulgaris L. molecules for antibacterial and anticancer activities. ACS Biomaterials Science & Engineering 8(9):3717-3732.
  • Nqunqa, S. et al. 2022. Musa paradaisica and Vitis vinifera functionalized Ag-NPs: electrochemical and optical detection of Escherichia coli in seawater. Journal of Surface Engineered Materials and Advanced Technology 12(3):35-59.
  • Gultekin, D.D. et al. 2017. Biosynthesis and characterization of copper oxide nanoparticles using Cimin grape (Vitis vinifera cv.) extract. International Journal of Secondary Metabolite 4(3, Special Issue 1):77-84.
  • Murthy, H. et al. 2018. A review on green synthesis of Cu and CuO nanomaterials for multifunctional applications. Mater. Sci. Res. India 15(3):279-295.
  • Jamuna, K. et al. 2014. Nano-scale preparation of titanium dioxide by Desmodium gangeticum root aqueous extract. Ceramics International 40(8):11933-11940.
  • Sankar, R. et al. 2014. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121:746-750.
  • Geetha, R., et al. 2013. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnology 4(4):91-98.
  • Vardhana, J. et al. 2022. Biogenic synthesis of copper nanoparticles using Vitis vinifera L. seed extract, and its in-vitro biological applications. In Journal of Plant Biochemistry and Biotechnology pp:1-4.
  • Agarwal, H., S.V. Kumar, S. Rajeshkumar 2017. A review on green synthesis of zinc oxide nanoparticles-An eco-friendly approach. Resource-Efficient Technologies 3(4):406-413.
  • Song, L., Ming-Pei et al. 2009. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Letters 9(3):1223-1227.
  • Dubey, S.P., M. Lahtinen, M. Sillanpää 2010. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry 45(7):1065-1071.
  • Mousavi, B., F. Tafvizi, S. Zaker Bostanabad 2018. Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artificial Cells, Nanomedicine and Biotechnology 46(sup1):499-510.
  • Qidwai, A. et al. 2018. Advances in biogenic nanoparticles and the mechanisms of antimicrobial effects. Indian Journal of Pharmaceutical Sciences 80(4).

Gümüş ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi ve Karakterizasyonu

Yıl 2024, Cilt: 53 Sayı: Özel Sayı 1, 180 – 188, 16.07.2024

https://doi.org/10.53471/bahce.1483062

Öz

Nanoteknoloji, bilimlerin hızla gelişen çok disiplinli bir alanı haline gelmiştir. Global ölçekte nüfus artışı ve buna bağlı gıda talebindeki hızlı artışa bağlı olarak tarımsal üretim artışının uyum sağlamasında nanoteknolojinden yararlanma çabaları hız kazanmıştır. Bu amaçla, nano ürünler tarımsal verimlik ve ürün kalitesinin artırılmasında, biyotik ve abiyotik streslerle başa çıkmada giderek daha yoğun kullanılmaktadır. Bu çalışmamızda iki üzüm çeşidinin (Ekşi Kara ve Gök Üzüm) çekirdek ekstreleriyle enkapsüle edilmiş Ag nanoparçacıklar (AgNP’ler) ve Cu nanoparçacıklar (CuNP’ler) yeşil sentez yöntemiyle üretilmiştir. AgNP’lerin sentezinde gümüş nitrat (AgNO₃), CuNP’lerin sentezinde bakır klorür (Cu₂(OH)₃Cl) kullanarak dört farklı nanomalzeme sentezlenmiştir. AgNP’ler ve CuNP’lerin FTIR (Fourier transforms infrared spectroscopy) analizinde, solüsyon içerisine yüklenen her iki AgNP’ler ve CuNP’l’erin ve ayrıca adsorbe edilen üzüm çekirdeği ekstreleriyle başarılı bir şekilde nanopartikül (NP) iskelet yapısına dâhil olduğu ve yüzey etkileşimi ile farklı fonksiyonel gurupların ortaya çıkmasıyla doğrulanmıştır. XRD analizinde, AgNP’lerin ve CuNP’lerin kristal yapıları ve spektrumların oluşturduğu gözlenmiştir. Zirve noktaları tetragonal kristal yapıya atfedilerek üzüm çekirdeği ekstresi bileşeni ve AgNP’ler ve CuNP’ler arasındaki kompleks oluşumunun güçlü bir kanıtı olarak değerlendirilmiştir. Nanopartiküllerin morfolojik yapılarının belirlenmesi TEM (Transmission electron microscopy) ile karakterize edilmiştir. TEM analizinde, NP’lerin küre veya küreye yakın şekillerde oldukları ve boyutlarının 10-20 nm aralığında olduğu belirlenmiştir. Üretilen AgNP’ler ve Cu NP’lerin bitki gelişinde, biyomedikal, tıbbi ve farmakolojik sahalarında kullanımına uygun olacağı söylenebilir.

Anahtar Kelimeler

Üzüm çekirdeği ekstresi, yeşil sentez, gümüş nanoparçacıklar, bakır nanoparçacıklar

Kaynakça

  • Gazioğlu Şensoy, R.İ., F. Balta, R. Cangi 2009. Bazı sofralık üzüm çeşitlerinin Van ekolojik koşullarındaki etkili sıcaklık toplamı değerlerinin belirlenmesi. Harran Üniversitesi Ziraat Fakültesi Dergisi 13(3):49-59.
  • Gerami, Z. et al. 2022. The mechanisms involved in the synthesis of biogenic nanoparticles, in Nano-enabled Agrochemicals in Agriculture, Elsevier, pp:63-77.
  • Philip, D. 2009. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 73(2):374-381.
  • Singh, K.P., S. Jahagirdar, B.K. Sarma 2021. Emerging Trends in Plant Pathology, Springer.
  • Li, W., et al. 2009. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4(1):16-19.
  • Harikumar, P., A. Aravind 2016. Antibacterial activity of copper nanoparticles and copper nanocomposites against Escherichia coli bacteria. Int. J. Sci. 5(2):83-90.
  • Filippi, M. et al. 2019. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain, 142(7):1858-1875.
  • Jalaluddin, M. et al. 2019. Antimicrobial activity of Curcuma longa L. extract on periodontal pathogens. Journal of Pharmacy&Bioallied Sciences 11(Suppl 2):203.
  • Mali, S.C. et al. 2020. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports 27:e00518.
  • Mirzaei, S., A. Ghabooli, M. Mirzaei 2020. Botrytis cinerea, one of the most‎ destructive plant pathogens, as a potent‎ to produce silver nanoparticles. International Journal of Nanoscience and Nanotechnology 16(4):243-248.
  • Keshari, A. et al. 2021. Analyzing the phytochemistry and anti-oxidant property of fabricated silver nanoparticles using Catharanthus roseus leaf extract. Research Journal of Biotechnology 16:12.
  • Shankar, S.S., A. Ahmad, M. Sastry 2023-a. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress 19(6):1627-1631.
  • Balavijayalakshmi, J., V. Ramalakshmi 2017. Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. Journal of Applied Research and Technology 15(5):413-422.
  • Begum, N.A. et al. 2009. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids and surfaces B: Biointerfaces 71(1):113-118.
  • He, X., H. Deng, H.-M. Hwang 2019. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis 27(1):1-21.
  • Li, M. et al. 2016. Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Frontiers in Plant Science 7:615.
  • Kara, Z., A. Sabır, Ö. Eker 2019. Ancient grape Vitis vinifera L. cv ‘Ekşi Kara’ in Anatolia. Selcuk Journal of Agriculture and Food Sciences 32(3):416-423.
  • Güneş Çimen, C., et al. 2022. Enhancement of PCL/PLA Electrospun nanocomposite fibers comprising silver nanoparticles encapsulated with Thymus vulgaris L. molecules for antibacterial and anticancer activities. In ACS Biomaterials Science & Engineering, pp:3717-3732.
  • Kamçi, H., T. Recep, H.U. Çelebioğlu 2022. Antibacterial activity of copper nanoparticles synthesized by using Peumus boldus leaf extract. Avrupa Bilim ve Teknoloji Dergisi 2022(36):139-142.
  • Kara, Z., et al. 2021. Silver nanoparticles synthesis by grape seeds (Vitis vinifera L.) extract and rooting effect on grape cuttings. Erwerbs-Obstbau 63(1):1-8.
  • Güneş Çimen, C. et al. 2022. Enhancement of PCL/PLA electrospun nanocomposite fibers comprising silver nanoparticles encapsulated with Thymus vulgaris L. molecules for antibacterial and anticancer activities. ACS Biomaterials Science & Engineering 8(9):3717-3732.
  • Nqunqa, S. et al. 2022. Musa paradaisica and Vitis vinifera functionalized Ag-NPs: electrochemical and optical detection of Escherichia coli in seawater. Journal of Surface Engineered Materials and Advanced Technology 12(3):35-59.
  • Gultekin, D.D. et al. 2017. Biosynthesis and characterization of copper oxide nanoparticles using Cimin grape (Vitis vinifera cv.) extract. International Journal of Secondary Metabolite 4(3, Special Issue 1):77-84.
  • Murthy, H. et al. 2018. A review on green synthesis of Cu and CuO nanomaterials for multifunctional applications. Mater. Sci. Res. India 15(3):279-295.
  • Jamuna, K. et al. 2014. Nano-scale preparation of titanium dioxide by Desmodium gangeticum root aqueous extract. Ceramics International 40(8):11933-11940.
  • Sankar, R. et al. 2014. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 121:746-750.
  • Geetha, R., et al. 2013. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnology 4(4):91-98.
  • Vardhana, J. et al. 2022. Biogenic synthesis of copper nanoparticles using Vitis vinifera L. seed extract, and its in-vitro biological applications. In Journal of Plant Biochemistry and Biotechnology pp:1-4.
  • Agarwal, H., S.V. Kumar, S. Rajeshkumar 2017. A review on green synthesis of zinc oxide nanoparticles-An eco-friendly approach. Resource-Efficient Technologies 3(4):406-413.
  • Song, L., Ming-Pei et al. 2009. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Letters 9(3):1223-1227.
  • Dubey, S.P., M. Lahtinen, M. Sillanpää 2010. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry 45(7):1065-1071.
  • Mousavi, B., F. Tafvizi, S. Zaker Bostanabad 2018. Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artificial Cells, Nanomedicine and Biotechnology 46(sup1):499-510.
  • Qidwai, A. et al. 2018. Advances in biogenic nanoparticles and the mechanisms of antimicrobial effects. Indian Journal of Pharmaceutical Sciences 80(4).

Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
BölümMakaleler
Yazarlar

Zeki Kara SELÇUK ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, BAHÇE BİTKİLERİ BÖLÜMÜ 0000-0003-1096-8288 Türkiye

Basma Humam Ezzaldeen Ezzaldeen SELÇUK ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ, BAHÇE BİTKİLERİ (DR) 0000-0001-9490-5676 Türkiye

Metin Doğan NECMETTİN ERBAKAN ÜNİVERSİTESİ, MERAM TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ MİKROBİYOLOJİ ANABİLİM DALI 0000-0003-3471-4768 Türkiye

Ahmet Avcı KTO KARATAY ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ 0000-0003-3434-1711 Türkiye

Yayımlanma Tarihi16 Temmuz 2024
Gönderilme Tarihi16 Ağustos 2023
Kabul Tarihi30 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 53 Sayı: Özel Sayı 1

Kaynak Göster

APAKara, Z., Ezzaldeen, B. H. E., Doğan, M., Avcı, A. (2024). Gümüş ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi ve Karakterizasyonu. Bahçe, 53(Özel Sayı 1), 180-188. https://doi.org/10.53471/bahce.1483062
AMAKara Z, Ezzaldeen BHE, Doğan M, Avcı A. Gümüş ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi ve Karakterizasyonu. Bahçe. Temmuz 2024;53(Özel Sayı 1):180-188. doi:10.53471/bahce.1483062
ChicagoKara, Zeki, Basma Humam Ezzaldeen Ezzaldeen, Metin Doğan, ve Ahmet Avcı. “Gümüş Ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi Ve Karakterizasyonu”. Bahçe 53, sy. Özel Sayı 1 (Temmuz 2024): 180-88. https://doi.org/10.53471/bahce.1483062.
EndNoteKara Z, Ezzaldeen BHE, Doğan M, Avcı A (01 Temmuz 2024) Gümüş ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi ve Karakterizasyonu. Bahçe 53 Özel Sayı 1 180–188.
IEEEZ. Kara, B. H. E. Ezzaldeen, M. Doğan, ve A. Avcı, “Gümüş ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi ve Karakterizasyonu”, Bahçe, c. 53, sy. Özel Sayı 1, ss. 180–188, 2024, doi: 10.53471/bahce.1483062.
ISNADKara, Zeki vd. “Gümüş Ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi Ve Karakterizasyonu”. Bahçe 53/Özel Sayı 1 (Temmuz 2024), 180-188. https://doi.org/10.53471/bahce.1483062.
JAMAKara Z, Ezzaldeen BHE, Doğan M, Avcı A. Gümüş ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi ve Karakterizasyonu. Bahçe. 2024;53:180–188.
MLAKara, Zeki vd. “Gümüş Ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi Ve Karakterizasyonu”. Bahçe, c. 53, sy. Özel Sayı 1, 2024, ss. 180-8, doi:10.53471/bahce.1483062.
VancouverKara Z, Ezzaldeen BHE, Doğan M, Avcı A. Gümüş ve Bakır Nanoparçacıkların Üzüm Çekirdeği Ekstresiyle Yeşil Sentez Yöntemiyle Üretimi ve Karakterizasyonu. Bahçe. 2024;53(Özel Sayı 1):180-8.

Download or read online: Click here