Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites

Yıl 2024, Cilt: 3 Sayı: 1, 35 – 43, 02.07.2024

https://doi.org/10.69560/cujast.1497189

Öz

This study investigates the influence of process parameters on kerf width in abrasive waterjet (AWJ) machining of glass fiber reinforced polymer (GFRP) composites. The experimental analysis was conducted using a Taguchi L27 orthogonal array to optimize the machining parameters: pressure, feed rate, abrasive flow rate, and standoff distance. The top kerf width (TKW) and bottom kerf width (BKW) were measured to evaluate the impact of these parameters. Results indicate that higher pressures and abrasive flow rates generally increase both TKW and BKW due to enhanced material removal rates. Conversely, increased feed rates tend to reduce kerf widths, highlighting the importance of optimizing cutting speeds. Standoff distance exhibited a less pronounced effect but still influenced the kerf widths. The optimal parameters for minimizing TKW and BKW were identified, providing valuable insights for improving precision and efficiency in AWJ machining of GFRP composites. These findings contribute to the development of more effective manufacturing practices for high-performance composite materials.

Anahtar Kelimeler

Abrasive waterjet cutting, optimization, reinforced composite, GFRP, machining parameters, kerf width.

Kaynakça

  • Abrão, A. M., Rubio, J. C. C., Faria, P. E., & Davim, J. P. 2008. The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Materials & Design, 29(2), 508-513. https://doi.org/10.1016/j.matdes.2007.01.016
  • Agarwal, B. D., & Broutman, L. J. 2017. Analysis and Performance of Fiber Composites. John Wiley & Sons. Davim, J. P. (Ed.). 2012. Machining of Polymer Composites. Springer Science & Business Media. https://doi.org/10.1007/978-0-85729-938-3
  • Friedrich, K., & Almajid, A. A. 2013. Manufacturing aspects of advanced polymer composites for automotive applications. Applied Composite Materials, 20(2), 107-128. https://doi.org/10.1007/s10443-012-9258-7
  • Hegde, M. N., & Sharma, S. S. 2008. Performance evaluation of polymer matrix composites in electronic packaging. Journal of Electronic Materials, 37(5), 688-694.
  • Hocheng, H., & Tsao, C. C. 2003. Comprehensive analysis of delamination in drilling of composite materials with various drill bits. Journal of Materials Processing Technology, 140(1-3), 335-339. https://doi.org/10.1016/S0924-0136(03)00749-0
  • Isbilir, O., & Ghassemieh, E. 2013. Evaluation of the influence of drill point angle and feed rate on delamination in drilling GFRP. Journal of Reinforced Plastics and Composites, 32(23), 1766-1781.
  • Kartal, F., & Kaptan, A. 2024. Artificial neural network and multiple regression analysis for predicting abrasive water jet cutting of Al 7068 aerospace alloy. Sigma Journal of Engineering and Natural Sciences, 42(2), 516-528. https://doi.org/10.14744/sigma.2023.00102
  • Kartal, F., & Kaptan, A. 2023. Influence of abrasive water jet turning operating parameters on surface roughness of ABS and PLA 3D printed parts materials. International Journal of 3D Printing Technologies and Digital Industry, 7(2), 184-190. https://doi.org/10.46519/ij3dptdi.1247636
  • Kaw, A. K. 2005. Mechanics of Composite Materials. CRC Press. https://doi.org/10.1201/9781420058291 Khashaba, U. A. 2004. Delamination in drilling GFR-thermoset composites. Composite Structures, 63(3-4), 313-327. https://doi.org/10.1016/S0263-8223(03)00180-6
  • Mallick, P. K. 2007. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. CRC Press. https://doi.org/10.1201/9781420005981
  • Rahme, G., Khashaba, U. A., & Hady, M. S. A. 2011. Machinability of glass fibre-reinforced polymer composites: A review. The International Journal of Advanced Manufacturing Technology, 55(5-8), 775-790.
  • Rubio, L., Abrao, A. M., & Davim, J. P. 2008. Effects of high speed in the drilling of glass fiber reinforced plastic. Journal of Composite Materials, 42(13), 1365-1379.
  • Sarasini, F., Santulli, C., & Valente, T. 2009. Hybrid composite materials: An overview. Composite Materials, 20, 105-132.
  • Singh, I., & Bhatnagar, N. 2006. Drilling of uni-directional glass fiber reinforced plastics: Experimental and finite element study. Materials & Design, 27(10), 872-880.

GFRP Kompozitlerin Aşındırıcı Su Jeti ile İşlenmesinde Proses Parametrelerinin Kerf Genişliğine Etkisi

Yıl 2024, Cilt: 3 Sayı: 1, 35 – 43, 02.07.2024

https://doi.org/10.69560/cujast.1497189

Öz

Bu çalışma, cam elyaf takviyeli polimer (GFRP) kompozitlerin aşındırıcı su jeti (AWJ) işlenmesinde işlem parametrelerinin kerf genişliği üzerindeki etkisini araştırmaktadır. Deneysel analiz, işleme parametrelerini optimize etmek için bir Taguchi L27 ortogonal dizisi kullanılarak gerçekleştirilmiştir: basınç, ilerleme hızı, aşındırıcı akış hızı ve ara mesafe. Bu parametrelerin etkisini değerlendirmek için üst kerf genişliği (TKW) ve alt kerf genişliği (BKW) ölçülmüştür. Sonuçlar, daha yüksek basınçların ve aşındırıcı akış hızlarının, artan malzeme çıkarma hızları nedeniyle genellikle hem TKW’yi hem de BKW’yi artırdığını göstermektedir. Tersine, artan ilerleme oranları kerf genişliklerini azaltma eğilimindedir ve bu da kesme hızlarını optimize etmenin önemini vurgulamaktadır. Ara mesafe daha az belirgin bir etki göstermiştir ancak yine de kerf genişliklerini etkilemiştir. TKW ve BKW’yi en aza indirmek için optimum parametreler belirlenmiş ve GFRP kompozitlerin AWJ işlenmesinde hassasiyet ve verimliliği artırmak için değerli bilgiler sağlanmıştır. Bu bulgular, yüksek performanslı kompozit malzemeler için daha etkili üretim uygulamalarının geliştirilmesine katkıda bulunmaktadır.

Anahtar Kelimeler

Aşındırıcı su jeti kesimi, optimizasyon, takviyeli kompozit, GFRP, işleme parametreleri, kesme genişliği.

Kaynakça

  • Abrão, A. M., Rubio, J. C. C., Faria, P. E., & Davim, J. P. 2008. The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Materials & Design, 29(2), 508-513. https://doi.org/10.1016/j.matdes.2007.01.016
  • Agarwal, B. D., & Broutman, L. J. 2017. Analysis and Performance of Fiber Composites. John Wiley & Sons. Davim, J. P. (Ed.). 2012. Machining of Polymer Composites. Springer Science & Business Media. https://doi.org/10.1007/978-0-85729-938-3
  • Friedrich, K., & Almajid, A. A. 2013. Manufacturing aspects of advanced polymer composites for automotive applications. Applied Composite Materials, 20(2), 107-128. https://doi.org/10.1007/s10443-012-9258-7
  • Hegde, M. N., & Sharma, S. S. 2008. Performance evaluation of polymer matrix composites in electronic packaging. Journal of Electronic Materials, 37(5), 688-694.
  • Hocheng, H., & Tsao, C. C. 2003. Comprehensive analysis of delamination in drilling of composite materials with various drill bits. Journal of Materials Processing Technology, 140(1-3), 335-339. https://doi.org/10.1016/S0924-0136(03)00749-0
  • Isbilir, O., & Ghassemieh, E. 2013. Evaluation of the influence of drill point angle and feed rate on delamination in drilling GFRP. Journal of Reinforced Plastics and Composites, 32(23), 1766-1781.
  • Kartal, F., & Kaptan, A. 2024. Artificial neural network and multiple regression analysis for predicting abrasive water jet cutting of Al 7068 aerospace alloy. Sigma Journal of Engineering and Natural Sciences, 42(2), 516-528. https://doi.org/10.14744/sigma.2023.00102
  • Kartal, F., & Kaptan, A. 2023. Influence of abrasive water jet turning operating parameters on surface roughness of ABS and PLA 3D printed parts materials. International Journal of 3D Printing Technologies and Digital Industry, 7(2), 184-190. https://doi.org/10.46519/ij3dptdi.1247636
  • Kaw, A. K. 2005. Mechanics of Composite Materials. CRC Press. https://doi.org/10.1201/9781420058291 Khashaba, U. A. 2004. Delamination in drilling GFR-thermoset composites. Composite Structures, 63(3-4), 313-327. https://doi.org/10.1016/S0263-8223(03)00180-6
  • Mallick, P. K. 2007. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. CRC Press. https://doi.org/10.1201/9781420005981
  • Rahme, G., Khashaba, U. A., & Hady, M. S. A. 2011. Machinability of glass fibre-reinforced polymer composites: A review. The International Journal of Advanced Manufacturing Technology, 55(5-8), 775-790.
  • Rubio, L., Abrao, A. M., & Davim, J. P. 2008. Effects of high speed in the drilling of glass fiber reinforced plastic. Journal of Composite Materials, 42(13), 1365-1379.
  • Sarasini, F., Santulli, C., & Valente, T. 2009. Hybrid composite materials: An overview. Composite Materials, 20, 105-132.
  • Singh, I., & Bhatnagar, N. 2006. Drilling of uni-directional glass fiber reinforced plastics: Experimental and finite element study. Materials & Design, 27(10), 872-880.

Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
BölümAraştırma Makaleleri
Yazarlar

Arslan Kaptan Sivas Cumhuriyet Üniversitesi 0000-0002-2431-9329 Türkiye

Serdar Mercan SIVAS CUMHURIYET UNIVERSITY 0000-0002-1225-8290 Türkiye

Fuat Kartal KASTAMONU UNIVERSITY 0000-0002-2567-9705 Türkiye

Erken Görünüm Tarihi2 Temmuz 2024
Yayımlanma Tarihi2 Temmuz 2024
Gönderilme Tarihi7 Haziran 2024
Kabul Tarihi1 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 1

Kaynak Göster

APAKaptan, A., Mercan, S., & Kartal, F. (2024). Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, 3(1), 35-43. https://doi.org/10.69560/cujast.1497189
AMAKaptan A, Mercan S, Kartal F. Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites. CUJAST. Temmuz 2024;3(1):35-43. doi:10.69560/cujast.1497189
ChicagoKaptan, Arslan, Serdar Mercan, ve Fuat Kartal. “Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi 3, sy. 1 (Temmuz 2024): 35-43. https://doi.org/10.69560/cujast.1497189.
EndNoteKaptan A, Mercan S, Kartal F (01 Temmuz 2024) Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3 1 35–43.
IEEEA. Kaptan, S. Mercan, ve F. Kartal, “Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites”, CUJAST, c. 3, sy. 1, ss. 35–43, 2024, doi: 10.69560/cujast.1497189.
ISNADKaptan, Arslan vd. “Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites”. Sivas Cumhuriyet Üniversitesi Bilim ve Teknoloji Dergisi 3/1 (Temmuz 2024), 35-43. https://doi.org/10.69560/cujast.1497189.
JAMAKaptan A, Mercan S, Kartal F. Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites. CUJAST. 2024;3:35–43.
MLAKaptan, Arslan vd. “Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites”. Sivas Cumhuriyet Üniversitesi Bilim Ve Teknoloji Dergisi, c. 3, sy. 1, 2024, ss. 35-43, doi:10.69560/cujast.1497189.
VancouverKaptan A, Mercan S, Kartal F. Influence of Process Parameters on Kerf Width in Abrasive Waterjet Machining of GFRP Composites. CUJAST. 2024;3(1):35-43.

Download or read online: Click here