INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS

Yıl 2024, Cilt: 10 Sayı: 1, 89 – 95, 30.06.2024

https://doi.org/10.22531/muglajsci.1409565

Öz

This study presents an examination of the design and evaluation process of an elliptical dipole antenna operating at the design frequency of 5 GHz. Initially based on conventional dipole antenna principles, the antenna’s design is iteratively refined through bandwidth enhancement techniques, resulting in the emergence of ultra-wideband characteristics. Notably, the modified antenna design features a distinctive notch band spanning from 4.21 to 10.06 GHz, positioning it as a versatile solution suitable for applications across the mid-band of 5G, as well as the full Ku and partial Ka bands, encompassing frequencies from 27 GHz to 31 GHz. Furthermore, this study investigates the impact of varying dielectric constants on antenna parameters, shedding light on a critical aspect often overlooked in conventional dipole antenna calculations. Through systematic analysis, it is revealed that a dielectric constant of 4.3, aligned with the commonly used low-cost epoxy-based FR-4 material, yields optimal performance. While higher dielectric constants broaden the antenna’s characteristics, lower values are found to enhance communication efficiency, thus offering potential benefits in terms of power consumption and cost savings. The detailed examination and findings presented in this study enrich the understanding of antenna design principles and provide valuable guidance for future research and practical applications in the field of wireless communication and antenna engineering.

Anahtar Kelimeler

Antenna, Dielectric Constant, 5G, Ka Band, Ku Band

Kaynakça

  • Merlin Teresa, P., and Umamaheswari, G., “Compact slotted microstrip antenna for 5G applications operating at 28 GHz”, IETE Journal of Research, 68(5), 3778-3785, 2022.
  • Rashmitha, R., Niran, N., Jugale, A. A., and Ahmed, M. R., “Microstrip patch antenna design for fixed mobile and satellite 5G communications”, Procedia Computer Science, 171, 2073-2079, 2020.
  • Kour, P., Kumar, H., and Khan, S., “Substrate Material Optimization for Bowtie Antenna for High Frequency Applications”, International Journal of Engineering and Advanced Research Technology (IJEART), 5(8), 20-23, 2019.
  • Aylapogu, P. K., and and Gurrala, K. K., “mm-wave based multiband spider slot patch antenna for 5G and underwater communication”, Microsystem Technologies, 1-10, 2023.
  • Parismita, K. A., Kumaresh, S., Sunandan, B., and Indrani, D., “Thin Film Based Novel Impedance Matching Technique for Ka-Band Microstrip Antenna”, In 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1-52, 2022/October.
  • Singh, S., Sharma, M., Palta, P., and Gupta, A. K., “Investigations on Millimeter Wave (mmW) Antenna for 5G Technology: Design Considerations and Applications”, CGC International Journal of Contemporary Technology and Research, 3(1), 149-153, 2020.
  • Meivel, S., Sindhwani, N., Valarmathi, S., Dhivya, G., Atchaya, M., Anand, R., and Maurya, S., “Design and method of 16.24 GHz microstrip network antenna using underwater wireless communication algorithm”, In Cyber-Technologies and Emerging Sciences: ICCTES, 363-371, 2022.
  • Yin, L., Yang, P., Dong, T., Hu, J., and Nie, Z., “Low Cost, Series-Parallel Fed 2-Bit Phased Array Antenna in Ku-Band”, IEEE Antennas and Wireless Propagation Letters, 22(5), 1084-1088, 2023.
  • Wang, H., Gou, Z., Zhang, L., Liu, S., and Shi, X., “A novel broadband magnetoelectric antenna”, International Journal of RF and Microwave Computer-Aided Engineering, 25(3), 213-218, 2014.
  • Dai, M., Gao, G., Wu, Q., and Yang, H., “A Novel Planar Elliptical Dipole Antenna for Ultra-Wideband Application”, In Proceedings of the Second International Conference on Mechatronics and Automatic Control, 1131-1136, 2015.
  • Lule, E., Babi, T., and Siwiak, K., “Diamond dipole antenna for ultra-wideband communications”, Microwave and Optical Technology Letters, 46(6), 536-538, 2005.
  • Ahsan, M., Islam, M., Ullah, M., Aldhaheri, R., and Sheikh, M., “A new design approach for dual-band patch antenna serving Ku/K band satellite communications”, International Journal of Satellite Communications and Networking, 34(6), 759-769, 2015.
  • Cappelletti, G., Caratelli, D., Cicchetti, R., and Simeoni, M., “A low-profile printed drop-shaped dipole antenna for wide-band wireless applications”, IEEE Transactions on Antennas and Propagation, 59(10), 3526-3535, 2011.
  • Xi Li, Lin Yang, Shu-Xi Gong, Yan-Jiong Yang, and Jian-Fu Liu, "A Compact Folded Printed Dipole Antenna for UHF RFID Reader," Progress In Electromagnetics Research Letters, 6, 47-54, 2009.
  • Tu, Z., Zhou, D., Guang-qiu, Z., Feng, X., Lei, X., and Zhang, D., “A wideband cavity-backed elliptical printed dipole antenna with enhanced radiation patterns”, IEEE Antennas and Wireless Propagation Letters, 12, 1610-1613, 2013.
  • Lee, C., Huang, H., Yang, C., and Wang, C., “An experimental study of the printed-circuit elliptic dipole antenna with 1.5-16 GHz bandwidth”, International Journal of Communications Network and System Sciences, 01(04), 295-300, 2008.
  • Ahmad, Y., Ismail, A., and Badron, K., “Ku-band specific attenuation coefficients for high-throughput satellites in equatorial region”, Telkomnika (Telecommunication Computing Electronics and Control), 20(4), 722, 2022.
  • Ullah, R., Ullah, S., Faisal, F., Ullah, R., Choi, D., Ahmad, A., and Kamal, B., “High-gain vivaldi antenna with wide bandwidth characteristics for 5G mobile and Ku-band radar applications”, Electronics, 10(6), 667, 2021.
  • Lu, F., Yu, J., Wang, R., Wang, H., Zhao, P., H, W., and Ma, C., “System demonstrations of ka‐band 5‐gbps data transmission for satellite applications”, International Journal of Satellite Communications and Networking, 40(3), 204-217, 2021.
  • Kuwahara, T., Lengowski, M., Beyermann, U., Uryu, A., and Roeser, H., “Ka-band high-speed communication systems on small satellites for future advanced communication networks and earth observations”, Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology, 8(ists27), 2010.
  • Singh, V., Mishra, B., and Singh, R., “Dual‐wideband semi‐circular patch antenna for Ku/K band applications”, Microwave and Optical Technology Letters, 61(2), 323-329, 2018.
  • Alkaraki, S., Gao, Y., and Parini, C., “High aperture efficient slot antenna surrounded by the cavity and narrow corrugations at Ka‐band and Ku‐band”, IET Microwaves Antennas & Propagation, 12(12), 1926-1931, 2018.
  • Karami, F., Rezaei, P., Amn-e-Elahi, A., Abolfathi, A., and Kishk, A., “Broadband and efficient patch array antenna fed by substrate integrated waveguide feed network for Ku‐band satellite applications”, International Journal of RF and Microwave Computer-Aided Engineering, 31(9), 2021.
  • Parchin, N. O., Shen, M., and Pedersen, G. F., “UWB mm-wave antenna array with quasi omnidirectional beams for 5G handheld devices”, IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 2016.
  • Cao, T. M., Phuong, T. H. T., and Bui, T. D., “Circularly polarized antenna array based on hybrid couplers for 5G devices”, Bulletin of Electrical Engineering and Informatics, 10(3), 2021.
  • Gao, C., Li, X., and Lu, W., “Conceptual design and implementation of a four‐element mimo antenna system packaged within a metallic handset”, Microwave and Optical Technology Letters, 60(2), 436-444, 2018.
  • Malik, J., Nagpal, D., and Kartikeyan, M. V., “MIMO antenna with omnidirectional pattern diversity”, Electronics Letters, 52(2), 102-104, 2016.
  • Nagy, L., “Modified mimo cube for enhanced channel capacity”, International Journal of Antennas and Propagation, 1-10, 2012.
  • Raoof, K., Zid, M. B., Prayongpun, N., and Bouallègue, A., Advanced MIMO techniques: polarization diversity and antenna selection. MIMO Systems, Theory and Applications, 1-54, 2011.
  • Lu, W., Li, X., Li, Q., and Li, Z., “Generalized design approach to compact wideband multi-resonant patch antennas”, International Journal of RF and Microwave Computer-Aided Engineering, 28(8), e21481, 2018.
  • Nazli, H., Bicak, E., Turetken, B., and Sezgin, M., “An improved design of planar elliptical dipole antenna for UWB applications”, IEEE Antennas and Wireless Propagation Letters, 9, 264-267, 2010.
  • Lu, W., Yu, J., and Li, Z., “On the multi‐resonant antennas: theory, history, and new development”, International Journal of RF and Microwave Computer-Aided Engineering, 29(9), 2019.
  • Schelkunoff, S. A., "Theory of Antennas of Arbitrary Size and Shape", Proceedings of the IRE, 29(9), 493-521, 1941.
  • Schelkunoff, S.A., Friis H.T., “Antennas: Theory and Practice”, New York: Wiley; 1952.
  • Kraus, J.D., “Antennas”, 2nd ed. New York: McGraw-Hill Book; 1988.
  • Pozar, D.M., “Microstrip antennas”, Proc IEEE, 80(1): 79-91, 1992.
  • Alford, A., Kandoian, A.G., “Ultrahigh-frequency loop antennas”, AIEE Trans Elec Eng, 59, 843-848, 1940.
  • Balanis C.A., “Antenna Theory Analysis and Design”, 3rd ed. New York: Wiley; 2005.
  • Li, X., Yang, L., Gong, S., Yang, Y. L., and Liu, a. J., “A compact folded printed dipole antenna for UHF RFID reader”, Progress in Electromagnetics Research Letters, 6, 47-54, 2009.
  • Zhang, C., Wang, J., and Chen, M., “Study on the characteristics of a compact ultra-wideband antenna”, 6th International Conference on ITS Telecommunications, 2006.
  • Li, G. and Zhang, F., “A compact wide beam circularly polarized antenna with wide impedance and axial ratio bandwidths”, International Journal of RF and Microwave Computer-Aided Engineering, 30(1), 2019.
  • She, Y., Tang, T., Wen, G. J., and Sun, H. R., “Ultra-high-frequency radio frequency identification tag antenna applied for human body and water surfaces”, International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21464, 2018.
  • Ray, K. P., “Design aspects of printed monopole antennas for ultra-wide band applications”, International Journal of Antennas and Propagation, 1-8, 2008.
  • Zhang, X., Yan, X., Liu, J., Yang, J., and Morris, J. E., “Printed monopole antenna with extremely wide bandwidth on liquid crystal polymer substrates”, 12th International Conference on Electronic Packaging Technology and High-Density Packaging, 2011.
  • Hossain, M. A. and Alam, M. S., “Performance evaluation of rectangular microstrip patch antennas loaded with plastic and barium-titanate substrates at GSM 1800 MHz band”, Open Journal of Antennas and Propagation, 06(03), 36-42, 2018.
  • Paul, L. C., “The effect of changing substrate material and thickness on the performance of inset feed microstrip patch antenna”, American Journal of Networks and Communications, 4(3), 54, 2015.
  • Salvado, R., Loss, C., Gonçalves, R., and Pinho, P., “Textile materials for the design of wearable antennas: A survey”, Sensors, 12(11), 15841-15857, 2012.
  • Mohammed, M. S. and Taan, L. M. A., “Design and construction of a circular microstrip patch antenna for Bluetooth band applications”, International Journal of Latest Engineering and Management Research (IJLEMR), 7(10), 01-07, 2022.
  • Antenna Magus. Available: http://www.antennamagus.com.
  • Tziris, E. N., Lazaridis, P. I., Zaharis, Z. D., Cosmas, J., Mistry, K. K., and Glover, I., “Optimized planar elliptical dipole antenna for UWB EMC applications”, IEEE Transactions on Electromagnetic Compatibility, 61(4), 1377-1384, 2019.
  • Park, S. and Kim, S., “A coupled-fed broadband dual-polarized magnetoelectric dipole antenna for WLAN and sub-6 GHz 5G communication applications”, Journal of Electromagnetic Engineering and Science, 23(1), 75-77, 2023.

5G, KU VE KA-BANT UYGULAMALARI İÇİN GENİŞ BANT GENİŞLİĞİNE SAHİP ELİPTİK DİPOL ANTEN PERFORMANS PARAMETRELERİNİN İNCELENMESİ: DİELEKTRİK SABİT ETKİLERİ

Yıl 2024, Cilt: 10 Sayı: 1, 89 – 95, 30.06.2024

https://doi.org/10.22531/muglajsci.1409565

Öz

Bu çalışmada, 5 GHz tasarım frekansında çalışan bir eliptik dipol antenin tasarım ve değerlendirme süreci incelenmektedir. Başlangıçta geleneksel dipol anten prensiplerine dayanan anten tasarımı, bant genişliği artırma teknikleri ile yinelemeli olarak iyileştirilmiş ve ultra geniş bant özelliklerinin ortaya çıkmasıyla sonuçlanmıştır. Özellikle, modifiye edilmiş anten tasarımı 4,21 ila 10,06 GHz arasında uzanan belirgin bir çentik bandına sahiptir ve bu da onu 5G’nin orta bandının yanı sıra 27 GHz ila 31 GHz frekanslarını kapsayan tam Ku ve kısmi Ka bantlarındaki uygulamalar için uygun çok yönlü bir çözüm olarak konumlandırmaktadır. Ayrıca bu çalışma, değişen dielektrik sabitlerinin anten parametreleri üzerindeki etkisini araştırarak, geleneksel dipol anten hesaplamalarında genellikle göz ardı edilen kritik bir konuya ışık tutuyor. Sistematik analizler sonucunda, yaygın olarak kullanılan düşük maliyetli epoksi bazlı FR-4 malzemesi ile uyumlu olan 4,3 dielektrik sabitinin en iyi performansı verdiği ortaya çıkmıştır. Daha yüksek dielektrik sabitleri antenin özelliklerini genişletirken, daha düşük değerlerin iletişim verimliliğini artırdığı ve böylece güç tüketimi ve maliyet tasarrufu açısından potansiyel faydalar sunduğu bulunmuştur. Bu çalışmada sunulan ayrıntılı inceleme ve bulgular, anten tasarım ilkelerinin anlaşılmasını zenginleştirmekte ve kablosuz iletişim ve anten mühendisliği alanında gelecekteki araştırmalar ve pratik uygulamalar için değerli bir rehberlik sağlamaktadır.

Anahtar Kelimeler

Anten, Dielektrik Sabiti, 5G, Ka Bandı, Ku Bandı

Kaynakça

  • Merlin Teresa, P., and Umamaheswari, G., “Compact slotted microstrip antenna for 5G applications operating at 28 GHz”, IETE Journal of Research, 68(5), 3778-3785, 2022.
  • Rashmitha, R., Niran, N., Jugale, A. A., and Ahmed, M. R., “Microstrip patch antenna design for fixed mobile and satellite 5G communications”, Procedia Computer Science, 171, 2073-2079, 2020.
  • Kour, P., Kumar, H., and Khan, S., “Substrate Material Optimization for Bowtie Antenna for High Frequency Applications”, International Journal of Engineering and Advanced Research Technology (IJEART), 5(8), 20-23, 2019.
  • Aylapogu, P. K., and and Gurrala, K. K., “mm-wave based multiband spider slot patch antenna for 5G and underwater communication”, Microsystem Technologies, 1-10, 2023.
  • Parismita, K. A., Kumaresh, S., Sunandan, B., and Indrani, D., “Thin Film Based Novel Impedance Matching Technique for Ka-Band Microstrip Antenna”, In 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1-52, 2022/October.
  • Singh, S., Sharma, M., Palta, P., and Gupta, A. K., “Investigations on Millimeter Wave (mmW) Antenna for 5G Technology: Design Considerations and Applications”, CGC International Journal of Contemporary Technology and Research, 3(1), 149-153, 2020.
  • Meivel, S., Sindhwani, N., Valarmathi, S., Dhivya, G., Atchaya, M., Anand, R., and Maurya, S., “Design and method of 16.24 GHz microstrip network antenna using underwater wireless communication algorithm”, In Cyber-Technologies and Emerging Sciences: ICCTES, 363-371, 2022.
  • Yin, L., Yang, P., Dong, T., Hu, J., and Nie, Z., “Low Cost, Series-Parallel Fed 2-Bit Phased Array Antenna in Ku-Band”, IEEE Antennas and Wireless Propagation Letters, 22(5), 1084-1088, 2023.
  • Wang, H., Gou, Z., Zhang, L., Liu, S., and Shi, X., “A novel broadband magnetoelectric antenna”, International Journal of RF and Microwave Computer-Aided Engineering, 25(3), 213-218, 2014.
  • Dai, M., Gao, G., Wu, Q., and Yang, H., “A Novel Planar Elliptical Dipole Antenna for Ultra-Wideband Application”, In Proceedings of the Second International Conference on Mechatronics and Automatic Control, 1131-1136, 2015.
  • Lule, E., Babi, T., and Siwiak, K., “Diamond dipole antenna for ultra-wideband communications”, Microwave and Optical Technology Letters, 46(6), 536-538, 2005.
  • Ahsan, M., Islam, M., Ullah, M., Aldhaheri, R., and Sheikh, M., “A new design approach for dual-band patch antenna serving Ku/K band satellite communications”, International Journal of Satellite Communications and Networking, 34(6), 759-769, 2015.
  • Cappelletti, G., Caratelli, D., Cicchetti, R., and Simeoni, M., “A low-profile printed drop-shaped dipole antenna for wide-band wireless applications”, IEEE Transactions on Antennas and Propagation, 59(10), 3526-3535, 2011.
  • Xi Li, Lin Yang, Shu-Xi Gong, Yan-Jiong Yang, and Jian-Fu Liu, "A Compact Folded Printed Dipole Antenna for UHF RFID Reader," Progress In Electromagnetics Research Letters, 6, 47-54, 2009.
  • Tu, Z., Zhou, D., Guang-qiu, Z., Feng, X., Lei, X., and Zhang, D., “A wideband cavity-backed elliptical printed dipole antenna with enhanced radiation patterns”, IEEE Antennas and Wireless Propagation Letters, 12, 1610-1613, 2013.
  • Lee, C., Huang, H., Yang, C., and Wang, C., “An experimental study of the printed-circuit elliptic dipole antenna with 1.5-16 GHz bandwidth”, International Journal of Communications Network and System Sciences, 01(04), 295-300, 2008.
  • Ahmad, Y., Ismail, A., and Badron, K., “Ku-band specific attenuation coefficients for high-throughput satellites in equatorial region”, Telkomnika (Telecommunication Computing Electronics and Control), 20(4), 722, 2022.
  • Ullah, R., Ullah, S., Faisal, F., Ullah, R., Choi, D., Ahmad, A., and Kamal, B., “High-gain vivaldi antenna with wide bandwidth characteristics for 5G mobile and Ku-band radar applications”, Electronics, 10(6), 667, 2021.
  • Lu, F., Yu, J., Wang, R., Wang, H., Zhao, P., H, W., and Ma, C., “System demonstrations of ka‐band 5‐gbps data transmission for satellite applications”, International Journal of Satellite Communications and Networking, 40(3), 204-217, 2021.
  • Kuwahara, T., Lengowski, M., Beyermann, U., Uryu, A., and Roeser, H., “Ka-band high-speed communication systems on small satellites for future advanced communication networks and earth observations”, Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology, 8(ists27), 2010.
  • Singh, V., Mishra, B., and Singh, R., “Dual‐wideband semi‐circular patch antenna for Ku/K band applications”, Microwave and Optical Technology Letters, 61(2), 323-329, 2018.
  • Alkaraki, S., Gao, Y., and Parini, C., “High aperture efficient slot antenna surrounded by the cavity and narrow corrugations at Ka‐band and Ku‐band”, IET Microwaves Antennas & Propagation, 12(12), 1926-1931, 2018.
  • Karami, F., Rezaei, P., Amn-e-Elahi, A., Abolfathi, A., and Kishk, A., “Broadband and efficient patch array antenna fed by substrate integrated waveguide feed network for Ku‐band satellite applications”, International Journal of RF and Microwave Computer-Aided Engineering, 31(9), 2021.
  • Parchin, N. O., Shen, M., and Pedersen, G. F., “UWB mm-wave antenna array with quasi omnidirectional beams for 5G handheld devices”, IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 2016.
  • Cao, T. M., Phuong, T. H. T., and Bui, T. D., “Circularly polarized antenna array based on hybrid couplers for 5G devices”, Bulletin of Electrical Engineering and Informatics, 10(3), 2021.
  • Gao, C., Li, X., and Lu, W., “Conceptual design and implementation of a four‐element mimo antenna system packaged within a metallic handset”, Microwave and Optical Technology Letters, 60(2), 436-444, 2018.
  • Malik, J., Nagpal, D., and Kartikeyan, M. V., “MIMO antenna with omnidirectional pattern diversity”, Electronics Letters, 52(2), 102-104, 2016.
  • Nagy, L., “Modified mimo cube for enhanced channel capacity”, International Journal of Antennas and Propagation, 1-10, 2012.
  • Raoof, K., Zid, M. B., Prayongpun, N., and Bouallègue, A., Advanced MIMO techniques: polarization diversity and antenna selection. MIMO Systems, Theory and Applications, 1-54, 2011.
  • Lu, W., Li, X., Li, Q., and Li, Z., “Generalized design approach to compact wideband multi-resonant patch antennas”, International Journal of RF and Microwave Computer-Aided Engineering, 28(8), e21481, 2018.
  • Nazli, H., Bicak, E., Turetken, B., and Sezgin, M., “An improved design of planar elliptical dipole antenna for UWB applications”, IEEE Antennas and Wireless Propagation Letters, 9, 264-267, 2010.
  • Lu, W., Yu, J., and Li, Z., “On the multi‐resonant antennas: theory, history, and new development”, International Journal of RF and Microwave Computer-Aided Engineering, 29(9), 2019.
  • Schelkunoff, S. A., "Theory of Antennas of Arbitrary Size and Shape", Proceedings of the IRE, 29(9), 493-521, 1941.
  • Schelkunoff, S.A., Friis H.T., “Antennas: Theory and Practice”, New York: Wiley; 1952.
  • Kraus, J.D., “Antennas”, 2nd ed. New York: McGraw-Hill Book; 1988.
  • Pozar, D.M., “Microstrip antennas”, Proc IEEE, 80(1): 79-91, 1992.
  • Alford, A., Kandoian, A.G., “Ultrahigh-frequency loop antennas”, AIEE Trans Elec Eng, 59, 843-848, 1940.
  • Balanis C.A., “Antenna Theory Analysis and Design”, 3rd ed. New York: Wiley; 2005.
  • Li, X., Yang, L., Gong, S., Yang, Y. L., and Liu, a. J., “A compact folded printed dipole antenna for UHF RFID reader”, Progress in Electromagnetics Research Letters, 6, 47-54, 2009.
  • Zhang, C., Wang, J., and Chen, M., “Study on the characteristics of a compact ultra-wideband antenna”, 6th International Conference on ITS Telecommunications, 2006.
  • Li, G. and Zhang, F., “A compact wide beam circularly polarized antenna with wide impedance and axial ratio bandwidths”, International Journal of RF and Microwave Computer-Aided Engineering, 30(1), 2019.
  • She, Y., Tang, T., Wen, G. J., and Sun, H. R., “Ultra-high-frequency radio frequency identification tag antenna applied for human body and water surfaces”, International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21464, 2018.
  • Ray, K. P., “Design aspects of printed monopole antennas for ultra-wide band applications”, International Journal of Antennas and Propagation, 1-8, 2008.
  • Zhang, X., Yan, X., Liu, J., Yang, J., and Morris, J. E., “Printed monopole antenna with extremely wide bandwidth on liquid crystal polymer substrates”, 12th International Conference on Electronic Packaging Technology and High-Density Packaging, 2011.
  • Hossain, M. A. and Alam, M. S., “Performance evaluation of rectangular microstrip patch antennas loaded with plastic and barium-titanate substrates at GSM 1800 MHz band”, Open Journal of Antennas and Propagation, 06(03), 36-42, 2018.
  • Paul, L. C., “The effect of changing substrate material and thickness on the performance of inset feed microstrip patch antenna”, American Journal of Networks and Communications, 4(3), 54, 2015.
  • Salvado, R., Loss, C., Gonçalves, R., and Pinho, P., “Textile materials for the design of wearable antennas: A survey”, Sensors, 12(11), 15841-15857, 2012.
  • Mohammed, M. S. and Taan, L. M. A., “Design and construction of a circular microstrip patch antenna for Bluetooth band applications”, International Journal of Latest Engineering and Management Research (IJLEMR), 7(10), 01-07, 2022.
  • Antenna Magus. Available: http://www.antennamagus.com.
  • Tziris, E. N., Lazaridis, P. I., Zaharis, Z. D., Cosmas, J., Mistry, K. K., and Glover, I., “Optimized planar elliptical dipole antenna for UWB EMC applications”, IEEE Transactions on Electromagnetic Compatibility, 61(4), 1377-1384, 2019.
  • Park, S. and Kim, S., “A coupled-fed broadband dual-polarized magnetoelectric dipole antenna for WLAN and sub-6 GHz 5G communication applications”, Journal of Electromagnetic Engineering and Science, 23(1), 75-77, 2023.

Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik Elektromanyetiği
BölümArticles
Yazarlar

Duygu Nazan Gençoğlan Adana Alparslan Trükeş Science and Technology University 0000-0001-5014-9514 Türkiye

Yayımlanma Tarihi30 Haziran 2024
Gönderilme Tarihi25 Aralık 2023
Kabul Tarihi22 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 1

Kaynak Göster

APAGençoğlan, D. N. (2024). INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS. Mugla Journal of Science and Technology, 10(1), 89-95. https://doi.org/10.22531/muglajsci.1409565
AMAGençoğlan DN. INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS. Mugla Journal of Science and Technology. Haziran 2024;10(1):89-95. doi:10.22531/muglajsci.1409565
ChicagoGençoğlan, Duygu Nazan. “INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS”. Mugla Journal of Science and Technology 10, sy. 1 (Haziran 2024): 89-95. https://doi.org/10.22531/muglajsci.1409565.
EndNoteGençoğlan DN (01 Haziran 2024) INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS. Mugla Journal of Science and Technology 10 1 89–95.
IEEED. N. Gençoğlan, “INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS”, Mugla Journal of Science and Technology, c. 10, sy. 1, ss. 89–95, 2024, doi: 10.22531/muglajsci.1409565.
ISNADGençoğlan, Duygu Nazan. “INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS”. Mugla Journal of Science and Technology 10/1 (Haziran 2024), 89-95. https://doi.org/10.22531/muglajsci.1409565.
JAMAGençoğlan DN. INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS. Mugla Journal of Science and Technology. 2024;10:89–95.
MLAGençoğlan, Duygu Nazan. “INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS”. Mugla Journal of Science and Technology, c. 10, sy. 1, 2024, ss. 89-95, doi:10.22531/muglajsci.1409565.
VancouverGençoğlan DN. INVESTIGATION OF BROADER BANDWIDTH ELLIPTICAL DIPOLE ANTENNA PERFORMANCE PARAMETERS FOR 5G, KU AND KA-BAND APPLICATIONS: DIELECTRIC CONSTANT EFFECTS. Mugla Journal of Science and Technology. 2024;10(1):89-95.

Download or read online: Click here