Minimizing satellite residence time in the GEO region through elevated eccentricity method

Yıl 2024, Cilt: 8 Sayı: 3, 416 – 426, 28.07.2024

https://doi.org/10.31127/tuje.1395250

Öz

This research focuses on a critical aspect of the space environment, addressing the escalating issue of space debris and congestion in the geostationary orbit. The geostationary orbit is facing many satellites, leading to hazardous congestion levels and jeopardizing the limited resources available. Although organizations have established regulations for retiring satellites to graveyard orbits, a complete removal is not always achievable for numerous reasons. In response to this challenge, our study proposes a practical and cost-effective solution to mitigate debris accumulation in the region. In addition to the above, our research focuses on protecting the geostationary space environment, especially in unforeseen events involving inclined-operated satellites. We explore the implementation of an elevated eccentricity method, increasing the eccentricity of aging satellites and assessing its impact on their time in the geostationary and geostationary-protected regions. Our analysis encompasses short-term, medium-term, and long-term periods, enabling us to evaluate the effectiveness of this approach over different time frames. The study reveals a significant reduction in the time satellites spend in these regions as their eccentricity increases. Moderate eccentricity levels can reduce satellite residence time in these regions from 100.00% to 3.81%. This compelling evidence demonstrates the feasibility and effectiveness of adopting elevated eccentricity as a viable strategy to mitigate space debris in the regions. This proposed approach offers satellite operators a reliable and cost-effective solution, ensuring safe operations and protecting critical regions for aging GEO satellites. Accordingly, we contribute to space environment protection, securing the sustainability of the geostationary orbit.

Anahtar Kelimeler

Geostationary orbit, Space debris, Graveyard orbits, Remove retired satellites, Geostationary protected region

Kaynakça

  • Delong, N., & Frémeaux, C. (2005). Eccentricity management for geostationary satellites during end of life operations. In 4th European Conference on Space Debris, 587, 297. Darmstadt: ESA Special Publication.
  • Xu, W., Liang, B., Li, B., & Xu, Y. (2011). A universal on-orbit servicing system used in the geostationary orbit. Advances in Space Research, 48(1), 95-119. https://doi.org/10.1016/j.asr.2011.02.012
  • Johnson, N. L. (2012). A new look at the GEO and near-GEO regimes: Operations, disposals, and debris. Acta Astronautica, 80, 82-88. https://doi.org/10.1016/j.actaastro.2012.05.024
  • Öz, İ., & Yılmaz, Ü. C. (2020). Determination of coverage oscillation for inclined communication satellite. Sakarya University Journal of Science, 24(5), 973-983. https://doi.org/10.16984/saufenbilder.702190
  • Oz, I. (2022). Salınımlı yörünge haberleşme uydularında 2 eksen düzeltmeli kapsama alanı stabilizasyonu. Journal of The Faculty of Engineering and Architecture of Gazi University, 38(1), 219-229. https://doi.org/10.17341/gazimmfd.960480
  • Fu, S. Y., Wang, Z. R., Shi, H. L., & Ma, L. H. (2018, June). The application of decommissioned GEO satellites to CAPS. In IOP Conference Series: Materials Science and Engineering, 372(1), 012033. https://doi.org/10.1088/1757-899X/372/1/012033
  • Tafazoli, M. (2009). A study of on-orbit spacecraft failures. Acta Astronautica, 64(2-3), 195-205. https://doi.org/10.1016/j.actaastro.2008.07.019
  • Cougnet, C., Gerber, B., Heemskerk, C., Kapellos, K., & Visentin, G. (2006). On-orbit servicing system of a GEO satellite fleet. In 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation ‘ASTRA.
  • Dong, X., Hu, C., Long, T., & Li, Y. (2016). Numerical analysis of orbital perturbation effects on inclined geosynchronous SAR. Sensors, 16(9), 1420. https://doi.org/10.3390/s16091420
  • Anselmo, L. (2004). The long-term evolution of the Italian satellites in the GEO region and their possible interaction with the orbital debris environment. In 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, IAC-03-IAA.5.2.05. https://doi.org/10.2514/6.IAC-03-IAA.5.2.05
  • Rosengren, A. J., Scheeres, D. J., & McMahon, J. W. (2013). Long-term dynamics and stability of GEO orbits: the primacy of the Laplace plane. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Hilton Head, South Carolina, AAS 13-865.
  • Jenkin, A. B., McVey, J. P., & Sorge, M. E. (2022). Assessment of time spent in the LEO, GEO, and semi-synchronous zones by spacecraft on long-term reentering disposal orbits. Acta Astronautica, 193, 579-594. https://doi.org/10.1016/j.actaastro.2021.07.048
  • Mei, H., Damaren, C. J., & Zhan, X. (2021). End-of-life geostationary satellite removal using realistic flat solar sails. Aerospace Systems, 4, 227-238. https://doi.org/10.1007/s42401-021-00089-8
  • Cabrières, B., Alby, F., & Cazaux, C. (2012). Satellite end of life constraints: Technical and organizational solutions. Acta Astronautica, 73, 212-220. https://doi.org/10.1016/j.actaastro.2011.10.014
  • Yilmaz, N. (2023). Assessment of latest global gravity field models by GNSS/Levelling Geoid. International Journal of Engineering and Geosciences, 8(2), 111-118. https://doi.org/10.26833/ijeg.1070042
  • Yilmaz, M., Turgut, B., Gullu, M., & Yilmaz, I. (2016). Evaluation of recent global geopotential models by GNSS/Levelling data: internal Aegean region. International Journal of Engineering and Geosciences, 1(1), 18-23. https://doi.org/10.26833/ijeg.285221
  • Vallado, D. A. (2001). Fundamentals of astrodynamics and applications, 12. Springer Science & Business Media.
  • Montenbruck, O., Gill, E., & Lutze, F. (2002). Satellite orbits: models, methods, and applications. Applied Mechanics Reviews, 55(2), B27-B28. https://doi.org/10.1115/1.1451162
  • Öz, İ. (2024). Eş konumlu uyduların yakınlaşma izlenmesine gerçek zamanlı mesafe ölçümü tabanlı yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 825-834. https://doi.org/10.17341/gazimmfd.1181262
  • Atiz, Ö. F., Konukseven, C., Öğütcü, S., & Alcay, S. (2022). Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey. International Journal of Engineering and Geosciences, 7(1), 67-80. https://doi.org/10.26833/ijeg.878236
  • Anselmo, L., & Pardini, C. (2017). On the end-of-life disposal of spacecraft and orbital stages operating in inclined geosynchronous orbits. In Proceedings of the 9th IAASS Conference, Session 05: Space Debris-I, 87-94.
  • Uçarli, A. C., Demir, F., Erol, S., & Alkan, R. M. (2021). Farklı GNSS uydu sistemlerinin hassas nokta konumlama (PPP) tekniğinin performansına etkisinin incelenmesi. Geomatik, 6(3), 247-258. https://doi.org/10.29128/geomatik.779420
  • Pirti, A., Gündoğan, Z. Ö., & Şimşek, M. (2022). QZSS uyduları ve sinyal yapıları. Geomatik, 7(3), 243-252. https://doi.org/10.29128/geomatik.979823
  • Pirti, A., Hoşbaş, R. G., Şenel, B., Köroğlu, M., & Bilim, S. (2021). Galileo uydu sistemi ve sinyal yapısı. Geomatik, 6(3), 207-216. https://doi.org/10.29128/geomatik.750469
  • Altuntaş, C., & Tunalıoğlu, N. (2022). Retrieving the SNR metrics with different antenna configurations for GNSS-IR. Turkish Journal of Engineering, 6(1), 87-94. https://doi.org/10.31127/tuje.870620
  • Koca, B., & Ceylan, A. (2018). Uydu konum belirleme sistemlerindeki (GNSS) güncel durum ve son gelişmeler. Geomatik, 3(1), 63-73. https://doi.org/10.29128/geomatik.348331
  • Refaat, A., Badawy, A., Ashry, M., & Omar, A. (2018). High accuracy spacecraft orbit propagator validation. In The International Conference on Applied Mechanics and Mechanical Engineering, 18th International Conference on Applied Mechanics and Mechanical Engineering, 1-9. Military Technical College.

Yıl 2024, Cilt: 8 Sayı: 3, 416 – 426, 28.07.2024

https://doi.org/10.31127/tuje.1395250

Öz

Kaynakça

  • Delong, N., & Frémeaux, C. (2005). Eccentricity management for geostationary satellites during end of life operations. In 4th European Conference on Space Debris, 587, 297. Darmstadt: ESA Special Publication.
  • Xu, W., Liang, B., Li, B., & Xu, Y. (2011). A universal on-orbit servicing system used in the geostationary orbit. Advances in Space Research, 48(1), 95-119. https://doi.org/10.1016/j.asr.2011.02.012
  • Johnson, N. L. (2012). A new look at the GEO and near-GEO regimes: Operations, disposals, and debris. Acta Astronautica, 80, 82-88. https://doi.org/10.1016/j.actaastro.2012.05.024
  • Öz, İ., & Yılmaz, Ü. C. (2020). Determination of coverage oscillation for inclined communication satellite. Sakarya University Journal of Science, 24(5), 973-983. https://doi.org/10.16984/saufenbilder.702190
  • Oz, I. (2022). Salınımlı yörünge haberleşme uydularında 2 eksen düzeltmeli kapsama alanı stabilizasyonu. Journal of The Faculty of Engineering and Architecture of Gazi University, 38(1), 219-229. https://doi.org/10.17341/gazimmfd.960480
  • Fu, S. Y., Wang, Z. R., Shi, H. L., & Ma, L. H. (2018, June). The application of decommissioned GEO satellites to CAPS. In IOP Conference Series: Materials Science and Engineering, 372(1), 012033. https://doi.org/10.1088/1757-899X/372/1/012033
  • Tafazoli, M. (2009). A study of on-orbit spacecraft failures. Acta Astronautica, 64(2-3), 195-205. https://doi.org/10.1016/j.actaastro.2008.07.019
  • Cougnet, C., Gerber, B., Heemskerk, C., Kapellos, K., & Visentin, G. (2006). On-orbit servicing system of a GEO satellite fleet. In 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation ‘ASTRA.
  • Dong, X., Hu, C., Long, T., & Li, Y. (2016). Numerical analysis of orbital perturbation effects on inclined geosynchronous SAR. Sensors, 16(9), 1420. https://doi.org/10.3390/s16091420
  • Anselmo, L. (2004). The long-term evolution of the Italian satellites in the GEO region and their possible interaction with the orbital debris environment. In 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, IAC-03-IAA.5.2.05. https://doi.org/10.2514/6.IAC-03-IAA.5.2.05
  • Rosengren, A. J., Scheeres, D. J., & McMahon, J. W. (2013). Long-term dynamics and stability of GEO orbits: the primacy of the Laplace plane. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Hilton Head, South Carolina, AAS 13-865.
  • Jenkin, A. B., McVey, J. P., & Sorge, M. E. (2022). Assessment of time spent in the LEO, GEO, and semi-synchronous zones by spacecraft on long-term reentering disposal orbits. Acta Astronautica, 193, 579-594. https://doi.org/10.1016/j.actaastro.2021.07.048
  • Mei, H., Damaren, C. J., & Zhan, X. (2021). End-of-life geostationary satellite removal using realistic flat solar sails. Aerospace Systems, 4, 227-238. https://doi.org/10.1007/s42401-021-00089-8
  • Cabrières, B., Alby, F., & Cazaux, C. (2012). Satellite end of life constraints: Technical and organizational solutions. Acta Astronautica, 73, 212-220. https://doi.org/10.1016/j.actaastro.2011.10.014
  • Yilmaz, N. (2023). Assessment of latest global gravity field models by GNSS/Levelling Geoid. International Journal of Engineering and Geosciences, 8(2), 111-118. https://doi.org/10.26833/ijeg.1070042
  • Yilmaz, M., Turgut, B., Gullu, M., & Yilmaz, I. (2016). Evaluation of recent global geopotential models by GNSS/Levelling data: internal Aegean region. International Journal of Engineering and Geosciences, 1(1), 18-23. https://doi.org/10.26833/ijeg.285221
  • Vallado, D. A. (2001). Fundamentals of astrodynamics and applications, 12. Springer Science & Business Media.
  • Montenbruck, O., Gill, E., & Lutze, F. (2002). Satellite orbits: models, methods, and applications. Applied Mechanics Reviews, 55(2), B27-B28. https://doi.org/10.1115/1.1451162
  • Öz, İ. (2024). Eş konumlu uyduların yakınlaşma izlenmesine gerçek zamanlı mesafe ölçümü tabanlı yaklaşım. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 825-834. https://doi.org/10.17341/gazimmfd.1181262
  • Atiz, Ö. F., Konukseven, C., Öğütcü, S., & Alcay, S. (2022). Comparative analysis of the performance of Multi-GNSS RTK: A case study in Turkey. International Journal of Engineering and Geosciences, 7(1), 67-80. https://doi.org/10.26833/ijeg.878236
  • Anselmo, L., & Pardini, C. (2017). On the end-of-life disposal of spacecraft and orbital stages operating in inclined geosynchronous orbits. In Proceedings of the 9th IAASS Conference, Session 05: Space Debris-I, 87-94.
  • Uçarli, A. C., Demir, F., Erol, S., & Alkan, R. M. (2021). Farklı GNSS uydu sistemlerinin hassas nokta konumlama (PPP) tekniğinin performansına etkisinin incelenmesi. Geomatik, 6(3), 247-258. https://doi.org/10.29128/geomatik.779420
  • Pirti, A., Gündoğan, Z. Ö., & Şimşek, M. (2022). QZSS uyduları ve sinyal yapıları. Geomatik, 7(3), 243-252. https://doi.org/10.29128/geomatik.979823
  • Pirti, A., Hoşbaş, R. G., Şenel, B., Köroğlu, M., & Bilim, S. (2021). Galileo uydu sistemi ve sinyal yapısı. Geomatik, 6(3), 207-216. https://doi.org/10.29128/geomatik.750469
  • Altuntaş, C., & Tunalıoğlu, N. (2022). Retrieving the SNR metrics with different antenna configurations for GNSS-IR. Turkish Journal of Engineering, 6(1), 87-94. https://doi.org/10.31127/tuje.870620
  • Koca, B., & Ceylan, A. (2018). Uydu konum belirleme sistemlerindeki (GNSS) güncel durum ve son gelişmeler. Geomatik, 3(1), 63-73. https://doi.org/10.29128/geomatik.348331
  • Refaat, A., Badawy, A., Ashry, M., & Omar, A. (2018). High accuracy spacecraft orbit propagator validation. In The International Conference on Applied Mechanics and Mechanical Engineering, 18th International Conference on Applied Mechanics and Mechanical Engineering, 1-9. Military Technical College.

Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer)
BölümArticles
Yazarlar

İbrahim Öz Ankara Yıldırım Beyazıt Üniversitesi Teknoloji Transfer Ofisi 0000-0003-4593-917X Türkiye

Erken Görünüm Tarihi5 Temmuz 2024
Yayımlanma Tarihi28 Temmuz 2024
Gönderilme Tarihi23 Kasım 2023
Kabul Tarihi1 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 3

Kaynak Göster

APAÖz, İ. (2024). Minimizing satellite residence time in the GEO region through elevated eccentricity method. Turkish Journal of Engineering, 8(3), 416-426. https://doi.org/10.31127/tuje.1395250
AMAÖz İ. Minimizing satellite residence time in the GEO region through elevated eccentricity method. TUJE. Temmuz 2024;8(3):416-426. doi:10.31127/tuje.1395250
ChicagoÖz, İbrahim. “Minimizing Satellite Residence Time in the GEO Region through Elevated Eccentricity Method”. Turkish Journal of Engineering 8, sy. 3 (Temmuz 2024): 416-26. https://doi.org/10.31127/tuje.1395250.
EndNoteÖz İ (01 Temmuz 2024) Minimizing satellite residence time in the GEO region through elevated eccentricity method. Turkish Journal of Engineering 8 3 416–426.
IEEEİ. Öz, “Minimizing satellite residence time in the GEO region through elevated eccentricity method”, TUJE, c. 8, sy. 3, ss. 416–426, 2024, doi: 10.31127/tuje.1395250.
ISNADÖz, İbrahim. “Minimizing Satellite Residence Time in the GEO Region through Elevated Eccentricity Method”. Turkish Journal of Engineering 8/3 (Temmuz 2024), 416-426. https://doi.org/10.31127/tuje.1395250.
JAMAÖz İ. Minimizing satellite residence time in the GEO region through elevated eccentricity method. TUJE. 2024;8:416–426.
MLAÖz, İbrahim. “Minimizing Satellite Residence Time in the GEO Region through Elevated Eccentricity Method”. Turkish Journal of Engineering, c. 8, sy. 3, 2024, ss. 416-2, doi:10.31127/tuje.1395250.
VancouverÖz İ. Minimizing satellite residence time in the GEO region through elevated eccentricity method. TUJE. 2024;8(3):416-2.

Download or read online: Click here