MUHAMMED BÂKIR YEZDÎ

(ö. 1047/1637’den sonra)

Matematikçi-astronom.

Müellif:

Hayatı hakkında kaynaklarda hemen hemen hiç bilgi bulunmayan Muhammed Bâkır b. Zeynelâbidîn Yezdî, Şah I. Abbas ve Şah Safî dönemlerinde İran’da yetişmiş klasik İslâm matematiğinin son büyük temsilcilerinden biridir. Bazı kaynaklarda Bahâeddin el-Âmilî’nin (ö. 1031/1622) öğrencisi, bazılarında ise hocası olarak gösterilen Yezdî (Aʿyânü’ş-Şîʿa, IX, 181), ʿUyûnü’l-ḥisâb adlı eserinde Gıyâseddin Cemşîd el-Kâşî’nin Miftâḥu’l-ḥisâb’ına zengin katkılarda bulunan matematikçi sıfatıyla dikkat çeker. Ne zaman vefat ettiği bilinmemekle beraber ʿUyûnü’l-ḥisâb’ı 1047’de (1637) tamamladığı ve 1069-1075 (1659-1664) yılları arasında telif edilen Rebîü’l-müneccimîn’de kendisinden rahmetle söz edildiğine göre (Ebü’l-Kāsım Kurbânî, s. 436, 438), bu tarihler arasındaki bir yılda ölmüş olmalıdır.

Yezdî’nin matematiği, tevarüs ettiği Semerkant matematik-astronomi okulunun birikimi üzerine kurulmuştur. Onun özellikle hesâb-ı Hindî temelinde algoritmik hesabı, Osmanlı coğrafyasındaki çağdaşı Ali Efendi’ye (İbn Hamza) benzer biçimde en son sınırlarına ulaştırdığı görülür. Bu çerçevede Cemşîd el-Kâşî’nin ondalık kesirler konusunda yaptıklarını Takıyyüddin er-Râsıd’ın seviyesinde olmasa da dikkate almıştır. Yezdî’nin en önemli başarısı sayılar teorisindedir. Dost sayılar konusunda Sâbit b. Kurre’den başlayıp Kemâleddin el-Fârisî ve İbnü’l-Bennâ üzerinden o güne ulaşmış çalışmaları sürdüren Yezdî, daha sonra Descartes’a nisbet edilen 9363584-9437056 dost sayı çiftini de ilk defa hesaplayan matematikçidir. Ali Rızâ Ca‘ferî Nâînî’ye göre antik sayılar teorisinde bulunmayan yeni bir sayı türü de keşfetmiştir. “Eşit ağırlıklı sayılar” denilen bu sayılar şu biçimde dile getirilebilir: a ve b gibi iki doğal sayının bölenleri toplamı birbirine eşitse, yani ó (a) = ó (b) ise a ve b eşit ağırlıklı sayılardır. Yezdî bunlara 39 ve 55’i örnek verir (bölenler toplamı 17). Yezdî’nin torunu Muhammed Bâkır b. Muhammed Hüseyin ise bunlara 12 ve 26 çiftini ekler (bölenleri toplamı 16). Yezdî, Ahmed b. Halîl’in başlattığı kombinasyon hesabı ile dayandığı temel kavramlar üzerinde de durur ve bu konuları tekrar ele alarak kombinasyon hesabında Cemşîd el-Kâşî ve Takıyyüddin er-Râsıd gibi geç dönem matematikçilerinin çalışmalarını tamamlar. Onun matematikte girdiği diğer önemli bir konu da sayılar teorisini ve cebiri ilgilendiren belirsiz denklemlerin hem tam hem rasyonel analizidir. Kerecî okulunun analitik anlayışı çerçevesinde yürüttüğü araştırmalarında örnek olarak m$v^{2}=x_{1}^{2}+…+x_{n}^{2}$ denkleminin tam sayı çözümünü araştırmış ve tamamen sayısal (aritmetik) bir çözüm teklif edip bunun için de x1’in çift ve teklik durumlarını mod 4 ve mod 8’e eşitlenecek biçimde hesaplamıştır. Ayrıca üçüncü dereceden denklemler konusunda yine Kerecî okulunun analitik anlayışı içerisinde üçüncü dereceden bazı özel tür denklemlerin köklerini nümerik olarak tesbit etmiş, bu arada m$a^{n}-b^{n}$’in açılımı üzerinde durmuştur. Yezdî’nin matematik çalışmalarında dikkati çeken önemli noktalardan biri de Nasîrüddîn-i Tûsî’nin Grekler’in hendesî matematiğine ilişkin tercüme metinlerine yaptığı tahrirler üzerine şerh ve hâşiye yazmasıdır. Öte yandan diğer bazı eserlerinde de Cemşîd el-Kâşî ile Bahâeddin el-Âmilî’nin temsil ettiği algoritmik matematiği geliştirmiştir.

Eserleri. Matematik. 1. ʿUyûnü’l-ḥisâb. Hesâb-ı Hindî sahasındaki kitap pozitif tam ve rasyonel sayılar aritmetiğiyle kök hesabı, hesâb-ı sittînî, mesâha, dört orantılı sayı, çift yanlış hesabı ve cebirle denklem çözümlerini ihtiva eden yedi bölümden oluşur; dost sayılar konusunda bir zeyil içeren nüshaları da bulunmaktadır. Çok sayıda yazma nüshası bulunan eser, Hint-İran dünyası yanında az olmakla birlikte Osmanlılar tarafından da kullanılmıştır (İÜ Ktp., AY, nr. 1023; TSMK, Emanet Hazinesi, nr. 1993). Muhammed Bâkır b. Mîr Muhammed İsmâil Hâtunâbâdî (ö. 1127/1715) tarafından Farsça’ya tercüme edilen eseri Yezdî’nin torunu Muhammed Bâkır b. Muhammed Hüseyin 1106’da (1695) Kifâyetü’l-lübâb fî şerḥi müşkilâti ʿUyûni’l-ḥisâb adıyla şerhetmiş ve bazı konularda yeni katkılarda bulunarak genişletmiştir (Tahran Üniversitesi Ktp., nr. 465). 2. Şerḥu Ḫulâṣati’l-ḥisâb. Bahâeddin el-Âmilî’nin Risâlet-i Bahâʾiyye adıyla da bilinen ünlü matematik kitabının şerhidir (bk. HULÂSATÜ’l-HİSÂB). Eserin ders kitabı olması sebebiyle Âmilî tarafından kısaca incelenen konular Yezdî’nin şerhinde ayrıntılı biçimde ele alınmıştır (Meşhed Üniversitesi Ktp., nr. 8528). 3. Şerḥu’l-maḳāleti’l-ʿâşire min taḥrîri Uṣûli Öḳlîdis. Nasîrüddîn-i Tûsî’nin, sürekli niceliğe dayalı irrasyonel sayıların araştırması olan Öklid’in Uṣûl’üne yaptığı tahririn onuncu makalesinin şerhidir (Tahran Sipehsâlâr Medresesi Ktp., nr. 460/13; Tahran Millî Ktp., nr. 864). 4. Ḥâşiye ʿalâ Taḥrîri’l-küre ve’l-üsṭuvâne. Archimedes’in Kitâbü’l-Küre ve’l-üsṭuvâne adlı eserinin Nasîrüddîn-i Tûsî tarafından yapılan tahririne hâşiyedir (Tahran Kitâbhâne-i Meclis-i Şûrâ-yı Millî, nr. 171/1). 5. Ḥavâşî ʿalâ taḥrîri Kitâbi’l-eşkâli’l-küriyye li-Menâlâvus. Menelaus’un küreler konusundaki eserinin şerhidir (St. Petersburg Millî Ktp., nr. 144/9). 6. Şerḥu taḥrîri Kitâbi’l-Uker li-Tedusius. Thedosios’un küreler hakkındaki hendesî eserinin şerhidir (Tahran, Mahmûd Ferhâd Mu‘temid Ktp., nr. 117/17). 7. Fütûḥât-ı Ġaybiyye. Ebü’l-Vefâ el-Bûzcânî’nin Kitâb fîmâ yaḥtâcü ileyhi’ṣ-ṣâniʿ min aʿmâli’l-hendese adlı eserinin Farsça şerhidir (Kitâbhâne-i Merkezî-i Âsitân-i Kuds-i Razavî, nr. 5371).

Astronomi-Astroloji. 1. Şerḥu Mücmeli’l-uṣûl. Kûşyâr b. Lebbân’ın astroloji konusundaki ünlü eserinin şerhidir (Taşkent Şarkiyat Enstitüsü Ktp., nr. 2572/36). 2. Tuḥfetü’l-müneccimîn. Astroloji konusunda genel bir eserdir (Taşkent Şarkiyat Enstitüsü Ktp., nr. 461). 3. Maṭlaʿu’l-envâr ve maṭlaʿu’l-enẓâr. Astronomiye dairdir (Meşhed Üniversitesi Ktp., nr. 319/3). 4. Mîzânü’ṣ-ṣafâʾiḥ. Usturlap hakkındadır (Tahran Mahmûd Ferhâd Mu‘temid Ktp., nr. 117/1; eserlerin yazma nüshaları ve diğer çalışmaları için ayrıca bk. Rosenfeld – İhsanoğlu, s. 355).

BİBLİYOGRAFYA
M. Bâkır el-Yezdî, ʿUyûnü’l-ḥisâb, TSMK, Emanet Hazinesi, nr. 1993, vr. 9b, 20a-b, 49a-b; Storey, Persian Literature, II, 3; Brockelmann, GAL Suppl., II, 591, 1024; Safâ, Edebiyyât, V/1, s. 348-350; Sezgin, GAS, V, 115, 130, 143, 155, 163, 325; Aʿyânü’ş-Şîʿa, IX, 181; Âgā Büzürg-i Tahrânî, eẕ-Ẕerîʿa ilâ teṣânîfi’ş-Şîʿa, Beyrut 1403/1983, XV, 378-379; XXI, 151; Alireza Dja‘farî Naini, Geschichte der Zahlentheorie im Orient im Mittelalter und zu Beginn der Neuzeit unter besonderer Berücksichtigung persischer Mathematiker, Braunschweig 1982, s. 4-51, 57-72; a.mlf., “A New Type of Numbers in a Seventeenth Century Manuscript: Al-Yāzdī on Numbers of Equal Weight”, MTUA, VII/1-2, Halep 1983, s. 125-138; Ebü’l-Kāsım Kurbânî, Zindegînâme-i Riyâżîdânân-ı Devre-i İslâmî, Tahran 1365 hş., s. 163, 436-441; Roshdi Rashed, The Development of Arabic Mathematics: Between Arithmetic and Algebra (trc. A. F. W. Armstrong), Dordrecht 1994, s. 131, 282, 286; a.mlf., “Algebra”, Encyclopedia of the History of Arabic Science (ed. Roshdi Rashed), London 1996, II, 358; a.mlf., “Combinatorial Analysis, Numerical Analysis, Diophantine Analysis and Number Theory”, a.e., II, 380, 391, 401, 402, 407, 410; a.mlf., “Nuṣûṣ li-târîḫi’l-aʿdâdi’l-müteḥâbbe ve ḥisâbü’t-tevâfuḳāt”, MTUA, VI/1-2 (1982), s. 5, 12-13, 55-59; B. A. Rosenfeld – Ekmeleddin İhsanoğlu, Mathematicians, Astronomers and Other Scholars of Islamic Civilization and Their Works (7th-19th c.), Istanbul 2003, s. 355 vd.; S. Brentjes, “The First Perfect Numbers and Three Types of Amicable Numbers in a Manuscript on Elemantary Number Theory by Ibn Fallûs”, Erdem, IV/11, Ankara 1988, s. 477.

Bu madde TDV İslâm Ansiklopedisi’nin 2005 yılında İstanbul’da basılan 30. cildinde, 507-508 numaralı sayfalarda yer almıştır.