Selenium nanoparticles synthesized via green methods from Calluna vulgaris extract: Exploring their antioxidant and antibacterial activities

Yıl 2024, Cilt: 11 Sayı: 3, 462 – 471, 29.08.2024

https://doi.org/10.21448/ijsm.1415795

Öz

This study introduces a sustainable and environmentally friendly method for synthesizing selenium nanoparticles (SeNPs) by using Calluna vulgaris as a reducing agent. The process involves the addition of Na2SeO3 to a C. vulgaris aqueous solution, followed by reduction with ascorbic acid. UV-Vis spectroscopy confirmed SeNP formation, with a distinct absorption peak at 289 nm. Morphological analysis via Scanning Electron Microscopy (SEM) revealed spherical nanoparticles below 100 nm, as corroborated by Transmission Electron Microscopy (TEM) images displaying sizes ranging from 42.91 to 66.93 nm. Energy Dispersive Spectroscopy (EDS) confirmed the presence of selenium. Antibacterial assessments demonstrated the efficacy of C.vulgaris Selenium Nanoparticles (Cv-SeNPs) against gram-positive (Enterococcus faecalis, Staphylococcus aureus) and gram-negative bacteria (Escherichia coli). Cv-SeNPs exhibited notable antibacterial activity, particularly against E. Faecalis. In terms of antioxidant activities, Cv-SeNPs exhibited significant scavenging potential against DPPH and ABTS radicals, with low IC50 values of 24.72 and 16.87 µg/mL, respectively. The scavenging activities increased with concentration, reaching 86.6% for DPPH and 99.7% for ABTS at specific concentrations. The inclusion of ascorbic acid as a capping agent further augmented the free radical scavenging capabilities, indicating a synergistic relationship between selenium nanoparticles and capping agents. This research underscores the dual functionality of Cv-SeNPs as effective antibacterial agents and potent antioxidants. The green synthesis methodology utilizing C. vulgaris offers a sustainable approach for producing selenium nanoparticles with desirable characteristics, suggesting potential applications in medicine and industry. Further research on biomedical and industrial uses of Cv-SeNPs is needed.

Anahtar Kelimeler

Selenium nanoparticles, Green synthesis, Calluna vulgaris, Antioxidant, Antibacterial

Proje Numarası

Burdur Mehmet Akif Ersoy University Scientific Research Rrojects Unit [Project number: 0875-YL-23]

Kaynakça

  • Adibian, F., Ghaderi, R.S., Sabouri, Z., Davoodi, J., Kazemi, M., Ghazvini, K., Youssefi, M., Soleimanpour, S., & Darroudi, M. (2022). Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity. BioMetals, 35, 147–158. https://doi.org/10.1007/s10534-021-00356-3
  • Barzegarparay, F., Najafzadehvarzi, H., Pourbagher, R., Parsian, H., Ghoreishi, S.M., & Mortazavi-Derazkola, S. (2023). Green synthesis of novel selenium nanoparticles using Crataegus monogyna extract (SeNPs@ CM) and investigation of its toxicity, antioxidant capacity, and anticancer activity against MCF-7 as a breast cancer cell line. Biomass Conversion and Biorefinery, 1-10. https://doi.org/10.1007/s13399-023-04604-z
  • Cittrarasu, V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W.C., Balasubramanian, B., & Arumugam, M. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific reports, 11(1), 1032. https://doi.org/10.1038/s41598-020-80327-9
  • Gangadoo, S., Stanley, D., Hughes, R.J., Moore, R.J., & Chapman, J. (2017). The synthesis and characterisation of highly stable and reproducible selenium nanoparticles. Inorganic and Nano Metal Chemistry, 47(11), 1568 1576. https://doi.org/10.1080/24701556.2017.1357611
  • Ge, Y.M., Xue, Y., Zhao, X.F., Liu, J.Z., Xing, W.C., Hu, S.W., & Gao, H.M. (2024). Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms. International Journal of Biological Macromolecules, 254, 127971. https://doi.org/10.1016/j.ijbiomac.2023.127971
  • Gunti, L., Dass, R.S., & Kalagatur, N.K. (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Frontiers in microbiology, 10, 931. https://doi.org/10.3389/fmicb.2019.00931
  • Hassan, H.U., Raja, N.I., Abasi, F., Mehmood, A., Qureshi, R., Manzoor, Z., Shahbaz, M., & Proćków, J. (2022). Comparative study of antimicrobial and antioxidant potential of Olea ferruginea fruit extract and its mediated selenium nanoparticles. Molecules, 27(16), 5194. https://doi.org/10.3390/molecules27165194
  • Kaunaite, V., Vilkickyte, G., & Raudone, L. (2022). Phytochemical diversity and antioxidant potential of wild heather (Calluna vulgaris L.) above ground parts. Plants, 11(17), 2207. https://doi.org/10.3390/plants11172207
  • Khurana, A., Tekula, S., Saifi, M.A., Venkatesh, P., & Godugu, C. (2019). Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy, 111, 802-812. https://doi.org/10.1016/j.biopha.2018.12. 146
  • Kokila, K., Elavarasan, N., & Sujatha, V. (2017). Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New Journal of Chemistry, 41(15), 7481-7490. https://doi.org/10.1039/C7NJ01124E
  • Mittal, A.K., Chisti, Y., & Banerjee, U.C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346 356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Mocchegiani, E., & Malavolta, M. (2009). Role of zinc and selenium in oxidative stress and immunosenescence: Implications for Healthy Ageing and Longevity. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook on Immunosenescence: Basic Understanding and Clinical Applications, Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9063-9_66
  • Mustapha, T., Misni, N., Ithnin, N.R., Daskum, A.M., & Unyah, N.Z. (2022). A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. International Journal of Environmental Research and Public Health, 19(2), 674. https://doi.org/10.3390/ijerph19020674
  • Nazir, S., Zaka, M., Adil, M., Abbasi, B.H., & Hano, C. (2018). Synthesis, characterization and bactericidal effect of ZnO nanoparticles via chemical and bio‐assisted (Silybum marianum in vitro plantlets and callus extract) methods: a comparative study. IET nanobiotechnology, 12(5), 604-608. https://doi.org/10.1049/iet-nbt.2017.0067
  • Parveen, K., Banse, V., Ledwani, L. (2016). Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc., 1724(1), 020048. https://doi.org/10.1063/1.4945168
  • Rajasekar, S., & Kuppusamy, S. (2021). Eco-friendly formulation of selenium nanoparticles and its functional characterization against breast cancer and normal cells. Journal of Cluster Science, 32(4), 907-915. https://doi.org/10.1007/s10876-020-01856-x
  • Raveendran, P., Fu, J., & Scott, L. (2003). Completely green synthesis and stabilization of metal nanoparticles. J Am. Chem. Soc., 125, 13940-13941. https://doi.org/10.1021/ja029267j
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Roman, M., Jitaru, P., & Barbante, C. (2014). Selenium biochemistry and its role for human health. Metallomics, 6(1), 25-54. https://doi.org/10.1039/c3mt00185g
  • Rotruck, J.T. ꎬ., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., & Hoekstra, W. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science, 179(4073), 588-590.
  • Saranya, T., Ramya, S., Kavithaa, K., Paulpandi, M., Cheon, Y.P., Harysh-Winster, S., Balachandar, V., & Narayanasamy, A. (2023). Green synthesis of selenium nanoparticles using Solanum nigrum fruit extract and its anti-cancer efficacy against triple-negative breast cancer. Journal of Cluster Science, 34(4), 1709-1719. https://doi.org/10.1007/s10876-022-02334-2
  • Shafey, A.M.E. (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), 304-339. https://doi.org/10.1515/gps-2020-0031
  • Shin, S., Saravanakumar, K., Mariadoss, A.V.A., Hu, X., Sathiyaseelan, A., & Wang, M.H. (2022). Functionalization of selenium nanoparticles using the methanolic extract of Cirsium setidens and its antibacterial, antioxidant, and cytotoxicity activities. Journal of Nanostructure in Chemistry, 12(1), 23-32. https://doi.org/10.1007/s40097-021-00397-7
  • Starchenko, G., Hrytsyk, A., Raal, A., & Koshovyi, O. (2020). Phytochemical profile and pharmacological activities of water and hydroethanolic dry extracts of Calluna vulgaris (L.) Hull. herb. Plants, 9(6), 751. https://doi.org/10.3390/plants9060751
  • Wang, Y.Y., Qiu, W.Y., Sun, L., Ding, Z.C., & Yan, J.K. (2018). Preparation, characterization, and antioxidant capacities of selenium nanoparticles stabilized using polysaccharide–protein complexes from Corbicula Fluminea. Food Bioscience, 26, 177 184. https://doi.org/10.1016/j.fbio.2018.10.014
  • Yesilot, S., & Aydin, C. (2019). Silver nanoparticles; a new hope in cancer therapy? East J Med 24(1), 111-116. https://doi.org/10.5505/ejm.2019.66487
  • Zeebaree, S.Y.S., Zeebaree, A.Y.S., & Zebari, O.I.H. (2020). Diagnosis of the multiple effect of selenium nanoparticles decorated by Asteriscus graveolens components in inhibiting HepG2 cell proliferation. Sustainable Chemistry and Pharmacy, 15, 100210. https://doi.org/10.1016/j.scp.2019.100210
  • Zonaro, E., Lampis, S., Turner, R.J., Qazi, S.J.S., & Vallini, G. (2015). Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Frontiers in microbiology, 6, 584. https://doi.org/10.3389/fmicb.2015.00584

Selenium nanoparticles synthesized via green methods from Calluna vulgaris extract: Exploring their antioxidant and antibacterial activities

Yıl 2024, Cilt: 11 Sayı: 3, 462 – 471, 29.08.2024

https://doi.org/10.21448/ijsm.1415795

Öz

This study introduces a sustainable and environmentally friendly method for synthesizing selenium nanoparticles (SeNPs) by using Calluna vulgaris as a reducing agent. The process involves the addition of Na2SeO3 to a C. vulgaris aqueous solution, followed by reduction with ascorbic acid. UV-Vis spectroscopy confirmed SeNP formation, with a distinct absorption peak at 289 nm. Morphological analysis via Scanning Electron Microscopy (SEM) revealed spherical nanoparticles below 100 nm, as corroborated by Transmission Electron Microscopy (TEM) images displaying sizes ranging from 42.91 to 66.93 nm. Energy Dispersive Spectroscopy (EDS) confirmed the presence of selenium. Antibacterial assessments demonstrated the efficacy of C.vulgaris Selenium Nanoparticles (Cv-SeNPs) against gram-positive (Enterococcus faecalis, Staphylococcus aureus) and gram-negative bacteria (Escherichia coli). Cv-SeNPs exhibited notable antibacterial activity, particularly against E. Faecalis. In terms of antioxidant activities, Cv-SeNPs exhibited significant scavenging potential against DPPH and ABTS radicals, with low IC50 values of 24.72 and 16.87 µg/mL, respectively. The scavenging activities increased with concentration, reaching 86.6% for DPPH and 99.7% for ABTS at specific concentrations. The inclusion of ascorbic acid as a capping agent further augmented the free radical scavenging capabilities, indicating a synergistic relationship between selenium nanoparticles and capping agents. This research underscores the dual functionality of Cv-SeNPs as effective antibacterial agents and potent antioxidants. The green synthesis methodology utilizing C. vulgaris offers a sustainable approach for producing selenium nanoparticles with desirable characteristics, suggesting potential applications in medicine and industry. Further research on biomedical and industrial uses of Cv-SeNPs is needed.

Anahtar Kelimeler

Selenium nanoparticles, Green synthesis, Calluna vulgaris, Antioxidant, Antibacterial

Destekleyen Kurum

This work was supported by the Burdur Mehmet Akif Ersoy University Scientific Research Rrojects Unit [Project number: 0875-YL-23].

Proje Numarası

Burdur Mehmet Akif Ersoy University Scientific Research Rrojects Unit [Project number: 0875-YL-23]

Kaynakça

  • Adibian, F., Ghaderi, R.S., Sabouri, Z., Davoodi, J., Kazemi, M., Ghazvini, K., Youssefi, M., Soleimanpour, S., & Darroudi, M. (2022). Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity. BioMetals, 35, 147–158. https://doi.org/10.1007/s10534-021-00356-3
  • Barzegarparay, F., Najafzadehvarzi, H., Pourbagher, R., Parsian, H., Ghoreishi, S.M., & Mortazavi-Derazkola, S. (2023). Green synthesis of novel selenium nanoparticles using Crataegus monogyna extract (SeNPs@ CM) and investigation of its toxicity, antioxidant capacity, and anticancer activity against MCF-7 as a breast cancer cell line. Biomass Conversion and Biorefinery, 1-10. https://doi.org/10.1007/s13399-023-04604-z
  • Cittrarasu, V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W.C., Balasubramanian, B., & Arumugam, M. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific reports, 11(1), 1032. https://doi.org/10.1038/s41598-020-80327-9
  • Gangadoo, S., Stanley, D., Hughes, R.J., Moore, R.J., & Chapman, J. (2017). The synthesis and characterisation of highly stable and reproducible selenium nanoparticles. Inorganic and Nano Metal Chemistry, 47(11), 1568 1576. https://doi.org/10.1080/24701556.2017.1357611
  • Ge, Y.M., Xue, Y., Zhao, X.F., Liu, J.Z., Xing, W.C., Hu, S.W., & Gao, H.M. (2024). Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms. International Journal of Biological Macromolecules, 254, 127971. https://doi.org/10.1016/j.ijbiomac.2023.127971
  • Gunti, L., Dass, R.S., & Kalagatur, N.K. (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Frontiers in microbiology, 10, 931. https://doi.org/10.3389/fmicb.2019.00931
  • Hassan, H.U., Raja, N.I., Abasi, F., Mehmood, A., Qureshi, R., Manzoor, Z., Shahbaz, M., & Proćków, J. (2022). Comparative study of antimicrobial and antioxidant potential of Olea ferruginea fruit extract and its mediated selenium nanoparticles. Molecules, 27(16), 5194. https://doi.org/10.3390/molecules27165194
  • Kaunaite, V., Vilkickyte, G., & Raudone, L. (2022). Phytochemical diversity and antioxidant potential of wild heather (Calluna vulgaris L.) above ground parts. Plants, 11(17), 2207. https://doi.org/10.3390/plants11172207
  • Khurana, A., Tekula, S., Saifi, M.A., Venkatesh, P., & Godugu, C. (2019). Therapeutic applications of selenium nanoparticles. Biomedicine & Pharmacotherapy, 111, 802-812. https://doi.org/10.1016/j.biopha.2018.12. 146
  • Kokila, K., Elavarasan, N., & Sujatha, V. (2017). Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New Journal of Chemistry, 41(15), 7481-7490. https://doi.org/10.1039/C7NJ01124E
  • Mittal, A.K., Chisti, Y., & Banerjee, U.C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346 356. https://doi.org/10.1016/j.biotechadv.2013.01.003
  • Mocchegiani, E., & Malavolta, M. (2009). Role of zinc and selenium in oxidative stress and immunosenescence: Implications for Healthy Ageing and Longevity. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook on Immunosenescence: Basic Understanding and Clinical Applications, Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9063-9_66
  • Mustapha, T., Misni, N., Ithnin, N.R., Daskum, A.M., & Unyah, N.Z. (2022). A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. International Journal of Environmental Research and Public Health, 19(2), 674. https://doi.org/10.3390/ijerph19020674
  • Nazir, S., Zaka, M., Adil, M., Abbasi, B.H., & Hano, C. (2018). Synthesis, characterization and bactericidal effect of ZnO nanoparticles via chemical and bio‐assisted (Silybum marianum in vitro plantlets and callus extract) methods: a comparative study. IET nanobiotechnology, 12(5), 604-608. https://doi.org/10.1049/iet-nbt.2017.0067
  • Parveen, K., Banse, V., Ledwani, L. (2016). Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc., 1724(1), 020048. https://doi.org/10.1063/1.4945168
  • Rajasekar, S., & Kuppusamy, S. (2021). Eco-friendly formulation of selenium nanoparticles and its functional characterization against breast cancer and normal cells. Journal of Cluster Science, 32(4), 907-915. https://doi.org/10.1007/s10876-020-01856-x
  • Raveendran, P., Fu, J., & Scott, L. (2003). Completely green synthesis and stabilization of metal nanoparticles. J Am. Chem. Soc., 125, 13940-13941. https://doi.org/10.1021/ja029267j
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Roman, M., Jitaru, P., & Barbante, C. (2014). Selenium biochemistry and its role for human health. Metallomics, 6(1), 25-54. https://doi.org/10.1039/c3mt00185g
  • Rotruck, J.T. ꎬ., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G., & Hoekstra, W. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science, 179(4073), 588-590.
  • Saranya, T., Ramya, S., Kavithaa, K., Paulpandi, M., Cheon, Y.P., Harysh-Winster, S., Balachandar, V., & Narayanasamy, A. (2023). Green synthesis of selenium nanoparticles using Solanum nigrum fruit extract and its anti-cancer efficacy against triple-negative breast cancer. Journal of Cluster Science, 34(4), 1709-1719. https://doi.org/10.1007/s10876-022-02334-2
  • Shafey, A.M.E. (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), 304-339. https://doi.org/10.1515/gps-2020-0031
  • Shin, S., Saravanakumar, K., Mariadoss, A.V.A., Hu, X., Sathiyaseelan, A., & Wang, M.H. (2022). Functionalization of selenium nanoparticles using the methanolic extract of Cirsium setidens and its antibacterial, antioxidant, and cytotoxicity activities. Journal of Nanostructure in Chemistry, 12(1), 23-32. https://doi.org/10.1007/s40097-021-00397-7
  • Starchenko, G., Hrytsyk, A., Raal, A., & Koshovyi, O. (2020). Phytochemical profile and pharmacological activities of water and hydroethanolic dry extracts of Calluna vulgaris (L.) Hull. herb. Plants, 9(6), 751. https://doi.org/10.3390/plants9060751
  • Wang, Y.Y., Qiu, W.Y., Sun, L., Ding, Z.C., & Yan, J.K. (2018). Preparation, characterization, and antioxidant capacities of selenium nanoparticles stabilized using polysaccharide–protein complexes from Corbicula Fluminea. Food Bioscience, 26, 177 184. https://doi.org/10.1016/j.fbio.2018.10.014
  • Yesilot, S., & Aydin, C. (2019). Silver nanoparticles; a new hope in cancer therapy? East J Med 24(1), 111-116. https://doi.org/10.5505/ejm.2019.66487
  • Zeebaree, S.Y.S., Zeebaree, A.Y.S., & Zebari, O.I.H. (2020). Diagnosis of the multiple effect of selenium nanoparticles decorated by Asteriscus graveolens components in inhibiting HepG2 cell proliferation. Sustainable Chemistry and Pharmacy, 15, 100210. https://doi.org/10.1016/j.scp.2019.100210
  • Zonaro, E., Lampis, S., Turner, R.J., Qazi, S.J.S., & Vallini, G. (2015). Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Frontiers in microbiology, 6, 584. https://doi.org/10.3389/fmicb.2015.00584

Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer), Farmasotik Biyoteknoloji
BölümMakaleler
Yazarlar

Ecem Erdem BURDUR MEHMET AKİF ERSOY UNIVERSITY 0009-0006-7940-1545 Türkiye

Çiğdem Aydın Acar BURDUR MEHMET AKİF ERSOY UNIVERSITY 0000-0002-1311-2314 Türkiye

Proje NumarasıBurdur Mehmet Akif Ersoy University Scientific Research Rrojects Unit [Project number: 0875-YL-23]
Erken Görünüm Tarihi6 Ağustos 2024
Yayımlanma Tarihi29 Ağustos 2024
Gönderilme Tarihi8 Ocak 2024
Kabul Tarihi10 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 3

Kaynak Göster

APAErdem, E., & Aydın Acar, Ç. (2024). Selenium nanoparticles synthesized via green methods from Calluna vulgaris extract: Exploring their antioxidant and antibacterial activities. International Journal of Secondary Metabolite, 11(3), 462-471. https://doi.org/10.21448/ijsm.1415795

Download or read online: Click here