SENTEZLENEN METAL OKSİT NANOKOMPOZİT YARDIMIYLA SUCUL ÇÖZELTİLERDEN REAKTİF AZO BOYA GİDERİMİ

Yıl 2024, Cilt: 27 Sayı: 2, 523 – 538, 03.06.2024

https://doi.org/10.17780/ksujes.1403697

Öz

This work investigates the possibility of utilizing Fe3O4@ZnO@TiO2 as magnetic nanocomposite materials for the adsorption of reactive orange 16 dye (RO 16) through batch adsorption processing. A batch system was used to investigate the effects of adsorbent dosage, contact time, dye initial concentration, and temperature on the removal performance of RO 16. SEM and EDS analyses were performed for surface properties and elemental analysis of the synthesized Fe3O4@ZnO@TiO2 nanocomposite. The equilibrium isotherm data were best correlated using the Langmuir model with a maximum adsorption capacity of 38.61 mg/g at 40◦C. The pseudo-second-order model well represented the adsorption kinetics and followed chemisorption. The prepared Fe3O4@ZnO@TiO2 is an effective adsorbent candidate for the removal of reactive dyes from wastewater.

Anahtar Kelimeler

Adsorption, Reactive Orange 16, composite material, magnetic nanoparticle, Fe3O4@ZnO@TiO2

Kaynakça

  • Asadi, R., Abdollahi, H., Gharabaghi, M., & Boroumand, Z. (2020). Effective removal of Zn (II) ions from aqueous solution by the magnetic MnFe2O4 and CoFe2O4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption. Advanced Powder Technology, 31(4), 1480-1489. https://doi.org/10.1016/j.apt.2020.01.028
  • Balarak, D., & McKay, G. (2021). Utilization of MWCNTs/Al2O3 as adsorbent for ciprofloxacin removal: Equilibrium, kinetics and thermodynamic studies. Journal of Environmental Science and Health, Part A, 56(3), 324-333. https://doi.org/10.1080/10934529.2021.1873674
  • Calvete, T., Lima, E. C., Cardoso, N. F., Vaghetti, J. C. P., Dias, S. L. P., & Pavan, F. A. (2010). Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies. Journal of Environmental Management, 91(8), 1695-1706. https://doi.org/10.1016/j.jenvman.2010.03.013
  • Canbaz, G. T., Açıkel, Ü., & Açıkel, Y. S. (2023). Removal of heavy metal by using green synthesis ZnO NPs and ZnO-HNT composite. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04393-5
  • Canbaz, G. T., Çakmak, N. K., Eroğlu, A., & Açıkel, Ü. (2019). Removal of Acid Orange 74 from wastewater with TiO2 nanoparticle. International Advanced Researches and Engineering Journal 03(01): 075-080.
  • Chandarana, H., Subburaj, S., Kumar, P. S., & Kumar, M. A. (2021). Evaluation of phase transfer kinetics and thermodynamic equilibria of Reactive Orange 16 sorption onto chemically improved Arachis hypogaea pod powder. Chemosphere, 276, 130136. https://doi.org/10.1016/j.chemosphere.2021.130136
  • Edet, U. A., & Ifelebuegu, A. O. (2020). Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes, 8(6), 665. https://doi.org/10.3390/pr8060665
  • Fang, L., Wu, H., Shi, Y., Tao, Y., & Yong, Q. (2021). Preparation of Lignin-Based Magnetic Adsorbent from Kraft Lignin for Adsorbing the Congo Red. Frontiers in Bioengineering and Biotechnology, 9, 691528. https://doi.org/10.3389/fbioe.2021.691528
  • Farouq, R., & Yousef, N. S. (2015). Equilibrium and Kinetics Studies of adsorption of Copper (II) Ions on Natural Biosorbent. International Journal of Chemical Engineering and Applications, 6(5), 319-324. https://doi.org/10.7763/IJCEA.2015.V6.503
  • Fauzian, M., Jalaludin, S., Taufik, A., & Saleh, R. (2016). Sonocatalytic Methylene Blue in The Presence of Fe3O4-CuO-TiO2 Nanocomposites Heterostructure. Journal of Physics: Conference Series, 710, 012006. https://doi.org/10.1088/1742-6596/710/1/012006
  • Gamal, R., Rizk, S. E., & El-Hefny, N. E. (2021). The adsorptive removal of Mo(VI) from aqueous solution by a synthetic magnetic chromium ferrite nanocomposite using a nonionic surfactant. Journal of Alloys and Compounds, 853, 157039. https://doi.org/10.1016/j.jallcom.2020.157039
  • Hu, Q., & Zhang, Z. (2019). Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. Journal of Molecular Liquids, 277, 646-648. https://doi.org/10.1016/j.molliq.2019.01.005
  • Jawad, A. H., Malek, N. N. A., Abdulhameed, A. S., & Razuan, R. (2020). Synthesis of Magnetic Chitosan-Fly Ash/Fe3O4 Composite for Adsorption of Reactive Orange 16 Dye: Optimization by Box–Behnken Design. Journal of Polymers and the Environment, 28(3), 1068-1082. https://doi.org/10.1007/s10924-020-01669-z
  • Jun, B.-M., Kim, S., Kim, Y., Her, N., Heo, J., Han, J., Yoon, Y. (2019). Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere, 231, 82-92. https://doi.org/10.1016/j.chemosphere.2019.05.076
  • Kansal, S. K., Lamba, R., Mehta, S. K., & Umar, A. (2013). Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles. Materials Letters, 106, 385-389. https://doi.org/10.1016/j.matlet.2013.05.074
  • Kataria, N., & Garg, V. K. (2017). Removal of Congo red and Brilliant green dyes from aqueous solution using flower shaped ZnO nanoparticles. Journal of Environmental Chemical Engineering, 5(6), 5420-5428. https://doi.org/10.1016/j.jece.2017.10.035
  • Keklikcioğlu Çakmak, N., & Topal Canbaz, G. (2020). TiO2 Nanopartikülü ve TiO2/Aktif Çamur Sentezi ile Sulu Çözeltiden Cu (II) İyonlarının Adsorpsiyonu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 10 (1), 86-98. https://doi.org/10.17714/gumusfenbil.514285
  • Kimura, I. Y., Laranjeira, M. C. M., De Fávere, V. T., & Furlan, L. (2002). The interaction between reactive dye containing vinylsulfone group and chitosan microspheres. International Journal of Polymeric Materials, 51(8), 759-768. https://doi.org/10.1080/714975829
  • Köklü, R., & Özer, Ç. (2018). Maliyetsiz bir adsorban olan sigara külü kullanılarak boyarmadde giderimi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 22(2), 174-180. https://doi.org/10.16984/saufenbilder.329234
  • Langmuir, I. (1918). The Adsorption of Gases On Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
  • Malek, N. N. A., Jawad, A. H., Ismail, K., Razuan, R., & ALOthman, Z. A. (2021). Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. International Journal of Biological Macromolecules, 189, 464-476. https://doi.org/10.1016/j.ijbiomac.2021.08.160
  • Marrakchi, F., Ahmed, M. J., Khanday, W. A., Asif, M., & Hameed, B. H. (2017). Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. Journal of the Taiwan Institute of Chemical Engineers, 71, 47-54. https://doi.org/10.1016/j.jtice.2016.12.026
  • Marrakchi, F., Khanday, W. A., Asif, M., & Hameed, B. H. (2016). Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. International Journal of Biological Macromolecules, 93, 1231-1239. https://doi.org/10.1016/j.ijbiomac.2016.09.069
  • Mousavi, S. M., Mahjoub, A. R., & Abazari, R. (2015). Green synthesis of ZnO hollow sphere nanostructures by a facile route at room temperature with efficient photocatalytic dye degradation properties. RSC Advances, 5(130), 107378-107388. https://doi.org/10.1039/C5RA19507A
  • Nemati, A., Haider, W., Ghanbarnezhad, S., Rahman, Z. U., & Ahmed, S. N. (2017). Synthesis and Characterization of Nanocomposite of Functionalized Graphene Oxide with Multi Core-Shell Fe3O4-ZnO-TiO2 Nanoparticles. Program adı: International Conference of Theoretical and Applied Nanoscience and Nanotechnology. https://doi.org/10.11159/tann17.111
  • Obulapuram, P. K., Arfin, T., Mohammad, F., Khiste, S. K., Chavali, M., Albalawi, A. N., & Al-Lohedan, H. A. (2021). Adsorption, Equilibrium Isotherm, and Thermodynamic Studies towards the Removal of Reactive Orange 16 Dye Using Cu(I)-Polyaninile Composite. Polymers, 13(20), 3490. https://doi.org/10.3390/polym13203490
  • Ragadhita, R., & Nandiyanto, A. B. D. (2022). Curcumin Adsorption On Zinc Imidazole Framework-8 Particles: Isotherm Adsorption Using Langmuir, Freundlich, Temkin, And Dubinin-Radushkevich Models. Journal of Engineering Science and Technology 17(2), 1078 – 1089.
  • Ravindiran, G., Gaddam, K., & Sunil, K. (2022). Experimental Investigation on Reactive Orange 16 Removal Using Waste Biomass of Ulva prolifera. Advances in Materials Science and Engineering, 2022, 1-8. https://doi.org/10.1155/2022/7323588
  • Sadaf, S., & Bhatti, H. N. (2014). Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 541-553. https://doi.org/10.1016/j.jtice.2013.05.004
  • Song, G., Shi, Y., Wang, H., Li, A., Li, W., Sun, Y., & Ding, G. (2022). Effective sorptive removal of five cationic dyes from aqueous solutions by using magnetic multi-walled carbon nanotubes. Water Science and Technology, 85(7), 1999-2014. https://doi.org/10.2166/wst.2022.090
  • Şentürk, İ. (2023). Effective adsorption of Congo red by eco-friendly granite-modified magnetic chitosan nanocomposite (G@Fe3O4@CS). Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04826-1
  • Şentürk, İ., & Alzein, M. (2020a). Adsorption of Acid Violet 17 onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermodynamic Studies. Acta Chim Slov 67(1), 55–69. https://doi.org/10.17344/acsi.2019.5195
  • Şentürk, İ., & Alzein, M. (2020b). Adsorptive removal of basic blue 41 using pistachio shell adsorbent—Performance in batch and column system. Sustainable Chemistry and Pharmacy, 16, 100254. https://doi.org/10.1016/j.scp.2020.100254
  • Şentürk, İ., & Yıldız, M. R. (2020). Highly efficient removal from aqueous solution by adsorption of Maxilon Red GRL dye using activated pine sawdust. Korean Journal of Chemical Engineering, 37(6), 985-999. https://doi.org/10.1007/s11814-020-0526-1
  • Taufik, A., & Saleh, R. (2017). Combination of ternary Fe3O4/TiO2/CuO nanocomposites and nanographene platelets: High performance photo and sonocatalysis. 030037. Solo, Indonesia. https://doi.org/10.1063/1.4968290
  • Topal Canbaz, G., Açikel, U., & Sağ Açikel, Y. (2022). ZnO-Kitosan Kompoziti ile Ağır Metal Gideri mi. European Journal of Science and Technology, 35, 603-609. https://doi.org/10.31590/ejosat.1094734
  • Weber, W. J., & Morris, J. C. (1963). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.
  • Winatapura, D. S., Dewi, S. H., Wardiyati, S., & Fisli, A. (2015). Photocatalitic Activity of Fe3O4/SiO2/TiO2 Composite by Mechanochemical Preparation. Indonesian Journal of Materials Science, 16(2), 54-58. https://doi.org/10.17146/jsmi.2015.16.2.4015
  • Yildirim, A. (2021). Removal of the Anionic Dye Reactive Orange 16 by Chitosan/Tripolyphosphate/Mushroom. Chemical Engineering & Technology, 44(8), 1371-1381. https://doi.org/10.1002/ceat.202100077
  • Zhang, F., Chen, X., Wu, F., & Ji, Y. (2016). High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 474-483. https://doi.org/10.1016/j.colsurfa.2016.09.059
  • Zhang, P., Mo, Z., Han, L., Zhu, X., Wang, B., & Zhang, C. (2014). Preparation and Photocatalytic Performance of Magnetic TiO2/Montmorillonite/Fe3O4 Nanocomposites. Industrial & Engineering Chemistry Research, 53(19), 8057-8061. https://doi.org/10.1021/ie5001696

SENTEZLENEN METAL OKSİT NANOKOMPOZİT YARDIMIYLA SUCUL ÇÖZELTİLERDEN REAKTİF AZO BOYA GİDERİMİ

Yıl 2024, Cilt: 27 Sayı: 2, 523 – 538, 03.06.2024

https://doi.org/10.17780/ksujes.1403697

Öz

Bu çalışma, kesikli adsorpsiyon prosesi ile Reaktif Orange 16 boyasının (RO 16) adsorpsiyonu için manyetik nanokompozit materyal olarak Fe3O4@ZnO@TiO2’nin kullanılma olasılığını araştırmaktadır. Adsorban dozajının, temas süresinin, boya başlangıç konsantrasyonunun ve sıcaklığın RO 16 giderim performansı üzerindeki etkilerini araştırmak için kesikli adsorpsiyon sistemi kullanılmıştır. Sentezlenen Fe3O4@ZnO@TiO2 nanokompozitin yüzey özellikleri ve elementel analizi için SEM ve EDS analizleri yapılmıştır. Denge izoterm verileri, 40◦C’de 38,61 mg/g maksimum adsorpsiyon kapasitesi ile Langmuir modeli kullanılarak en iyi şekilde ilişkilendirilmiştir. Sözde ikinci dereceden model adsorpsiyon kinetiğini iyi bir şekilde temsil etmiş ve kemisorpsiyonu takip etmiştir. Hazırlanan Fe3O4@ZnO@TiO2, reaktif boyaların atık sulardan uzaklaştırılmasında kullanılabilecek etkili bir adsorbent adayıdır.

Anahtar Kelimeler

adsorpsiyon, Reaktif Orange 16, kompozit materyal, manyetik nanopartikül, Fe3O4@ZnO@TiO2

Etik Beyan

Çalışma için etik beyan iznine gerek yoktur.

Kaynakça

  • Asadi, R., Abdollahi, H., Gharabaghi, M., & Boroumand, Z. (2020). Effective removal of Zn (II) ions from aqueous solution by the magnetic MnFe2O4 and CoFe2O4 spinel ferrite nanoparticles with focuses on synthesis, characterization, adsorption, and desorption. Advanced Powder Technology, 31(4), 1480-1489. https://doi.org/10.1016/j.apt.2020.01.028
  • Balarak, D., & McKay, G. (2021). Utilization of MWCNTs/Al2O3 as adsorbent for ciprofloxacin removal: Equilibrium, kinetics and thermodynamic studies. Journal of Environmental Science and Health, Part A, 56(3), 324-333. https://doi.org/10.1080/10934529.2021.1873674
  • Calvete, T., Lima, E. C., Cardoso, N. F., Vaghetti, J. C. P., Dias, S. L. P., & Pavan, F. A. (2010). Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies. Journal of Environmental Management, 91(8), 1695-1706. https://doi.org/10.1016/j.jenvman.2010.03.013
  • Canbaz, G. T., Açıkel, Ü., & Açıkel, Y. S. (2023). Removal of heavy metal by using green synthesis ZnO NPs and ZnO-HNT composite. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04393-5
  • Canbaz, G. T., Çakmak, N. K., Eroğlu, A., & Açıkel, Ü. (2019). Removal of Acid Orange 74 from wastewater with TiO2 nanoparticle. International Advanced Researches and Engineering Journal 03(01): 075-080.
  • Chandarana, H., Subburaj, S., Kumar, P. S., & Kumar, M. A. (2021). Evaluation of phase transfer kinetics and thermodynamic equilibria of Reactive Orange 16 sorption onto chemically improved Arachis hypogaea pod powder. Chemosphere, 276, 130136. https://doi.org/10.1016/j.chemosphere.2021.130136
  • Edet, U. A., & Ifelebuegu, A. O. (2020). Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes, 8(6), 665. https://doi.org/10.3390/pr8060665
  • Fang, L., Wu, H., Shi, Y., Tao, Y., & Yong, Q. (2021). Preparation of Lignin-Based Magnetic Adsorbent from Kraft Lignin for Adsorbing the Congo Red. Frontiers in Bioengineering and Biotechnology, 9, 691528. https://doi.org/10.3389/fbioe.2021.691528
  • Farouq, R., & Yousef, N. S. (2015). Equilibrium and Kinetics Studies of adsorption of Copper (II) Ions on Natural Biosorbent. International Journal of Chemical Engineering and Applications, 6(5), 319-324. https://doi.org/10.7763/IJCEA.2015.V6.503
  • Fauzian, M., Jalaludin, S., Taufik, A., & Saleh, R. (2016). Sonocatalytic Methylene Blue in The Presence of Fe3O4-CuO-TiO2 Nanocomposites Heterostructure. Journal of Physics: Conference Series, 710, 012006. https://doi.org/10.1088/1742-6596/710/1/012006
  • Gamal, R., Rizk, S. E., & El-Hefny, N. E. (2021). The adsorptive removal of Mo(VI) from aqueous solution by a synthetic magnetic chromium ferrite nanocomposite using a nonionic surfactant. Journal of Alloys and Compounds, 853, 157039. https://doi.org/10.1016/j.jallcom.2020.157039
  • Hu, Q., & Zhang, Z. (2019). Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. Journal of Molecular Liquids, 277, 646-648. https://doi.org/10.1016/j.molliq.2019.01.005
  • Jawad, A. H., Malek, N. N. A., Abdulhameed, A. S., & Razuan, R. (2020). Synthesis of Magnetic Chitosan-Fly Ash/Fe3O4 Composite for Adsorption of Reactive Orange 16 Dye: Optimization by Box–Behnken Design. Journal of Polymers and the Environment, 28(3), 1068-1082. https://doi.org/10.1007/s10924-020-01669-z
  • Jun, B.-M., Kim, S., Kim, Y., Her, N., Heo, J., Han, J., Yoon, Y. (2019). Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere, 231, 82-92. https://doi.org/10.1016/j.chemosphere.2019.05.076
  • Kansal, S. K., Lamba, R., Mehta, S. K., & Umar, A. (2013). Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles. Materials Letters, 106, 385-389. https://doi.org/10.1016/j.matlet.2013.05.074
  • Kataria, N., & Garg, V. K. (2017). Removal of Congo red and Brilliant green dyes from aqueous solution using flower shaped ZnO nanoparticles. Journal of Environmental Chemical Engineering, 5(6), 5420-5428. https://doi.org/10.1016/j.jece.2017.10.035
  • Keklikcioğlu Çakmak, N., & Topal Canbaz, G. (2020). TiO2 Nanopartikülü ve TiO2/Aktif Çamur Sentezi ile Sulu Çözeltiden Cu (II) İyonlarının Adsorpsiyonu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 10 (1), 86-98. https://doi.org/10.17714/gumusfenbil.514285
  • Kimura, I. Y., Laranjeira, M. C. M., De Fávere, V. T., & Furlan, L. (2002). The interaction between reactive dye containing vinylsulfone group and chitosan microspheres. International Journal of Polymeric Materials, 51(8), 759-768. https://doi.org/10.1080/714975829
  • Köklü, R., & Özer, Ç. (2018). Maliyetsiz bir adsorban olan sigara külü kullanılarak boyarmadde giderimi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 22(2), 174-180. https://doi.org/10.16984/saufenbilder.329234
  • Langmuir, I. (1918). The Adsorption of Gases On Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
  • Malek, N. N. A., Jawad, A. H., Ismail, K., Razuan, R., & ALOthman, Z. A. (2021). Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. International Journal of Biological Macromolecules, 189, 464-476. https://doi.org/10.1016/j.ijbiomac.2021.08.160
  • Marrakchi, F., Ahmed, M. J., Khanday, W. A., Asif, M., & Hameed, B. H. (2017). Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. Journal of the Taiwan Institute of Chemical Engineers, 71, 47-54. https://doi.org/10.1016/j.jtice.2016.12.026
  • Marrakchi, F., Khanday, W. A., Asif, M., & Hameed, B. H. (2016). Cross-linked chitosan/sepiolite composite for the adsorption of methylene blue and reactive orange 16. International Journal of Biological Macromolecules, 93, 1231-1239. https://doi.org/10.1016/j.ijbiomac.2016.09.069
  • Mousavi, S. M., Mahjoub, A. R., & Abazari, R. (2015). Green synthesis of ZnO hollow sphere nanostructures by a facile route at room temperature with efficient photocatalytic dye degradation properties. RSC Advances, 5(130), 107378-107388. https://doi.org/10.1039/C5RA19507A
  • Nemati, A., Haider, W., Ghanbarnezhad, S., Rahman, Z. U., & Ahmed, S. N. (2017). Synthesis and Characterization of Nanocomposite of Functionalized Graphene Oxide with Multi Core-Shell Fe3O4-ZnO-TiO2 Nanoparticles. Program adı: International Conference of Theoretical and Applied Nanoscience and Nanotechnology. https://doi.org/10.11159/tann17.111
  • Obulapuram, P. K., Arfin, T., Mohammad, F., Khiste, S. K., Chavali, M., Albalawi, A. N., & Al-Lohedan, H. A. (2021). Adsorption, Equilibrium Isotherm, and Thermodynamic Studies towards the Removal of Reactive Orange 16 Dye Using Cu(I)-Polyaninile Composite. Polymers, 13(20), 3490. https://doi.org/10.3390/polym13203490
  • Ragadhita, R., & Nandiyanto, A. B. D. (2022). Curcumin Adsorption On Zinc Imidazole Framework-8 Particles: Isotherm Adsorption Using Langmuir, Freundlich, Temkin, And Dubinin-Radushkevich Models. Journal of Engineering Science and Technology 17(2), 1078 – 1089.
  • Ravindiran, G., Gaddam, K., & Sunil, K. (2022). Experimental Investigation on Reactive Orange 16 Removal Using Waste Biomass of Ulva prolifera. Advances in Materials Science and Engineering, 2022, 1-8. https://doi.org/10.1155/2022/7323588
  • Sadaf, S., & Bhatti, H. N. (2014). Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 541-553. https://doi.org/10.1016/j.jtice.2013.05.004
  • Song, G., Shi, Y., Wang, H., Li, A., Li, W., Sun, Y., & Ding, G. (2022). Effective sorptive removal of five cationic dyes from aqueous solutions by using magnetic multi-walled carbon nanotubes. Water Science and Technology, 85(7), 1999-2014. https://doi.org/10.2166/wst.2022.090
  • Şentürk, İ. (2023). Effective adsorption of Congo red by eco-friendly granite-modified magnetic chitosan nanocomposite (G@Fe3O4@CS). Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04826-1
  • Şentürk, İ., & Alzein, M. (2020a). Adsorption of Acid Violet 17 onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermodynamic Studies. Acta Chim Slov 67(1), 55–69. https://doi.org/10.17344/acsi.2019.5195
  • Şentürk, İ., & Alzein, M. (2020b). Adsorptive removal of basic blue 41 using pistachio shell adsorbent—Performance in batch and column system. Sustainable Chemistry and Pharmacy, 16, 100254. https://doi.org/10.1016/j.scp.2020.100254
  • Şentürk, İ., & Yıldız, M. R. (2020). Highly efficient removal from aqueous solution by adsorption of Maxilon Red GRL dye using activated pine sawdust. Korean Journal of Chemical Engineering, 37(6), 985-999. https://doi.org/10.1007/s11814-020-0526-1
  • Taufik, A., & Saleh, R. (2017). Combination of ternary Fe3O4/TiO2/CuO nanocomposites and nanographene platelets: High performance photo and sonocatalysis. 030037. Solo, Indonesia. https://doi.org/10.1063/1.4968290
  • Topal Canbaz, G., Açikel, U., & Sağ Açikel, Y. (2022). ZnO-Kitosan Kompoziti ile Ağır Metal Gideri mi. European Journal of Science and Technology, 35, 603-609. https://doi.org/10.31590/ejosat.1094734
  • Weber, W. J., & Morris, J. C. (1963). Kinetics of Adsorption on Carbon from Solution. Journal of the Sanitary Engineering Division, 89(2), 31-60.
  • Winatapura, D. S., Dewi, S. H., Wardiyati, S., & Fisli, A. (2015). Photocatalitic Activity of Fe3O4/SiO2/TiO2 Composite by Mechanochemical Preparation. Indonesian Journal of Materials Science, 16(2), 54-58. https://doi.org/10.17146/jsmi.2015.16.2.4015
  • Yildirim, A. (2021). Removal of the Anionic Dye Reactive Orange 16 by Chitosan/Tripolyphosphate/Mushroom. Chemical Engineering & Technology, 44(8), 1371-1381. https://doi.org/10.1002/ceat.202100077
  • Zhang, F., Chen, X., Wu, F., & Ji, Y. (2016). High adsorption capability and selectivity of ZnO nanoparticles for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 474-483. https://doi.org/10.1016/j.colsurfa.2016.09.059
  • Zhang, P., Mo, Z., Han, L., Zhu, X., Wang, B., & Zhang, C. (2014). Preparation and Photocatalytic Performance of Magnetic TiO2/Montmorillonite/Fe3O4 Nanocomposites. Industrial & Engineering Chemistry Research, 53(19), 8057-8061. https://doi.org/10.1021/ie5001696

Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Kirliliği ve Önlenmesi, Çevre Mühendisliği (Diğer)
BölümÇevre Mühendisliği
Yazarlar

İlknur Şentürk SİVAS CUMHURİYET ÜNİVERSİTESİ 0000-0002-8217-2281 Türkiye

Yayımlanma Tarihi3 Haziran 2024
Gönderilme Tarihi12 Aralık 2023
Kabul Tarihi10 Ocak 2024
Yayımlandığı Sayı Yıl 2024Cilt: 27 Sayı: 2

Kaynak Göster

APAŞentürk, İ. (2024). SENTEZLENEN METAL OKSİT NANOKOMPOZİT YARDIMIYLA SUCUL ÇÖZELTİLERDEN REAKTİF AZO BOYA GİDERİMİ. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 27(2), 523-538. https://doi.org/10.17780/ksujes.1403697

Download or read online: Click here