Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator

Yıl 2024, Cilt: 27 Sayı: 2, 10 – 18, 01.06.2024

https://doi.org/10.5541/ijot.1368985

Öz

The process of phasing out of medium and high global warming potential refrigerants is accelerating in all areas of refrigeration, particularly since the European F-Gas Regulation No. 517/2014 and the ensuing Kigali amendment went into effect. Hydrocarbon refrigerants are being considered as suitable alternatives due to their low global warming potential and excellent thermal properties, but due to their flammability, safety precautions must be followed. This theoretical study contributes to the evaluation of the thermal and environmental impact of hydrocarbon refrigerants as drop-in alternatives to R134a in domestic refrigerator. In order to conduct an analysis of energy, exergy, and environmental factors, R134a and all hydrocarbons refrigerants proposed by ASHRAE—R290, R600, R600a, R601, R601a, and R1270—were examined as operating fluids used in a domestic refrigerator with a cooling capacity of 157 W and constant condenser temperature of 40°C and variable evaporator temperature every 5°C between -5 and -30°C. The results revealed that all the alternative refrigerants except R601 and R601a have higher thermal and environmental performance than R134a and can be used after refrigerator compressor replacement.

Anahtar Kelimeler

Domestic refrigerator, R134a, R290, R600, R600a, R601, R601a, R1270, TEW1

Kaynakça

  • J. Gill and J. Singh, “Energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant,” Int. J. Refrig., vol. 84, pp. 287–299, 2017. doi: 10.1016/j.ijrefrig.2017.08.001
  • K. Protocol, “Kyoto protocol", UNFCCC Website.” 1997. Available online: http://unfccc.int/kyoto_protocol/items/2830
  • I. M. G. Almeida, C. R. F. Barbosa, and F. de A. O. Fontes, “Thermodynamic and thermophysical assessment of hydrocarbons application in househould refrigerator,” Rev. Eng. Térmica, vol. 9, no. 1–2, pp. 19–27, 2010. doi: 10.5380/reterm.v9i1-2.61926
  • G. Venkatarathnam and S. Srinivasa Murthy, “Refrigerants for vapour compression refrigeration systems,” Resonance, vol. 17, pp. 139–162, 2012. doi: 10.1007/s12045-012-0015-x
  • K. Harby, “Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview,” Renew. Sustain. Energy Rev., vol. 73, pp. 1247–1264, 2017. doi: 10.1016/j.rser.2017.02.039
  • R. Zhai, Z. Yang, Y. Zhang, Z. Lv, and B. Feng, “Effect of temperature and humidity on the flammability limits of hydrocarbons,” Fuel, vol. 270, p. 117442, 2020. doi: 10.1016/j.fuel.2020.117442
  • M. Mohanraj, S. Jayaraj, C. Muraleedharan, and P. Chandrasekar, “Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator,” Int. J. Therm. Sci., vol. 48, no. 5, pp. 1036–1042, 2009. doi: 10.1016/j.ijthermalsci.2008.08.001
  • W. S. Mohammad and A. O. Jassim, “Experimental and Theoretical Investigation of Propane/Butane and Propane/Isobutane Mixtures as an Alternative to R134a in a Domestic Refrigerator,” Eng. Technol. J., vol. 32, no. 5 Part (A) Engineering, 2014.
  • K. Chopra, V. Sahni, and R. S. Mishra, “Energy, exergy and sustainability analysis of two-stage vapour compression refrigeration system,” J. Therm. Eng., vol. 1, no. 4, pp. 440–445, 2015. doi: 10.18186/jte.95418
  • C. H. de Paula, W. M. Duarte, T. T. M. Rocha, R. N. de Oliveira, and A. A. T. Maia, “Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a,” Int. J. Refrig., vol. 113, pp. 10–20, 2020. doi: 10.1016/j.ijrefrig.2020.01.012
  • E. Gundabattini, C. Masselli, D. S. Gnanaraj, S. Tadikonda, V. Karnati, and V. K. Vemireddy, “Improving the Energy Performances of the Refrigeration Systems with Subcooling Using the Eco-Friendly Refrigerant R600a: Initial Experimental Results.,” Instrumentation, Mes. Métrologies, vol. 19, no. 2, pp. 73–81, 2020. doi: 10.18280/i2m.190201
  • D. Sánchez, R. Cabello, R. Llopis, I. Arauzo, J. Catalán-Gil, and E. Torrella, “Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives,” Int. J. Refrig., vol. 74, pp. 269–282, 2017. doi: 10.1016/j.ijrefrig.2016.09.020
  • M. Shaik Sk and K. Srinivas, “Theoretical analysis of a Low GWP Refrigerants as a Drop in substitute of R134a in a Domestic Refrigerator,” Iran. J. Energy & Environ., vol. 9, no. 2, pp. 130–136, 2018. doi: 10.5829/ijee.2018.09.02.08
  • S. S. Hastak and J. M. Kshirsagar, “Comparative performance analysis of R600a and R436a as an alternative of R134a refrigerant in a domestic refrigerator,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 377, no. 1, p. 12047. doi: 10.1088/1757-899X/377/1/012047
  • P. Siddegowda, G. Mundur Sannappagowda, V. Jain, and S. Javare Gowda, “Hydrocarbons as Alternate Refrigerants to Replace R134a in Domestic Refrigerators.,” Rev. des Compos. des Matériaux Avancés, vol. 29, no. 2, pp.95–99, 2019. doi: 10.18280/rcma.290204
  • C. H. de Paula, W. M. Duarte, T. T. M. Rocha, R. N. de Oliveira, R. de Paoli Mendes, and A. A. T. Maia, “Thermo-economic and environmental analysis of a small capacity vapor compression refrigeration system using R290, R1234yf, and R600a,” Int. J. Refrig., vol. 118, pp. 250–260, 2020. doi: 10.1016/j.ijrefrig.2020.07.003
  • M. Ghanbarpour, A. Mota-Babiloni, B. E. Badran, and R. Khodabandeh, “Energy, exergy, and environmental (3E) analysis of hydrocarbons as low GWP alternatives to R134a in vapor compression refrigeration configurations,” Appl. Sci., vol. 11, no. 13, p. 6226, 2021. doi: 10.3390/app11136226
  • S. Sharma and V. K. Dwivedi, “Comparative Assessment of Environment-Friendly Alternative to R134a in Vapour Compression Refrigeration System using Exergy Destruction,” J. Eng. Res., vol. 10, 2022. doi: 10.36909/jer.ICMET.17205
  • A. Kilicarslan and N. Müller, “A comparative study of water as a refrigerant with some current refrigerants,” Int. J. energy Res., vol. 29, no. 11, pp. 947–959, 2005. doi: 10.1002/er.1084
  • ASHRAE, ASHRAE fundamentals (SI). 2017.
  • NIST, NIST reference fluid thermodynamic and transport properties database (REFPROP), v. 9.0. National Institute of Standards and Technology, Gaithersburg, MD, 2010.
  • J. C. Calm, G. C. Hourahan, A. Vonsild, D. Clodic, and D. Colbourne, 2014 Report of the refrigeration, air conditioning, and heat pumps technical options committee, Ch. 2: Refrigerants. United Nations Environment Programme (UNEP) Ozone Secretariat, Nairobi, 2015.
  • IPCC, Climate change 2013: The physical science basis. Cambridge University Press, 2013.
  • M. A. Islam, K. Srinivasan, K. Thu, and B. B. Saha, “Assessment of total equivalent warming impact (TEWI) of supermarket refrigeration systems,” Int. J. Hydrogen Energy, vol. 42, no. 43, pp. 26973–26983, 2017. doi:10.1016/j.ijhydene.2017.07.035
  • Carbonfootprint, CARBON FOOTPRINT COUNTRY SPECIFIC ELECTRICITY GRID GREENHOUSE GAS EMISSION FACTORS Last Updated: March 2022. March, pp. 1–11, 2022. https://www.carbonfootprint.com
  • M. Direk, A. Kelesoglu, and A. I. Ahmet, “Theoretical performance analysis of an R1234yf refrigeration cycle based on the effectiveness of internal heat exchanger,” Hittite J. Sci. Eng., vol. 4, no. 1, pp. 23–30, 2017. doi: 10.17350/HJSE19030000044
  • Q. Chen, L. Zhou, G. Yan, and J. Yu, “Theoretical investigation on the performance of a modified refrigeration cycle with R170/R290 for freezers application,” Int. J. Refrig., vol. 104, pp. 282–290, 2019. doi: 10.1016/j.ijrefrig.2019.05.037
  • S. Khatoon and M. N. Karimi, “Thermodynamic analysis of two evaporator vapor compression refrigeration system with low GWP refrigerants in automobiles,” Int. J. Air-Conditioning Refrig., vol. 31, no. 1, p. 2, 2023. doi: 10.1007/s44189-022-00017-1
  • M. Elakdhar, E. Nehdi, and L. Kairouani, “Analysis of a compression/ejection cycle for domestic refrigeration,” Ind. & Eng. Chem. Res., vol. 46, no. 13, pp. 4639–4644, 2007. doi: 10.1021/ie070377e
  • H. M. Ali, S. A. Kadhim, and O. A. A. M. Ibrahim, “Evaluating Refrigerant Purity Characteristics: An Experimental Approach to Assess Impact on Vapor-Compression Refrigeration System Performance,” Int. J. heat & Technol., vol. 41, no. 4, pp. 883–890, 2023. doi: 10.18280/ijht.410410
  • N. Bilir and H. K. Ersoy, “Performance improvement of the vapour compression refrigeration cycle by a two-phase constant area ejector,” Int. J. energy Res., vol. 33, no. 5, pp. 469–480, 2009. doi: 10.1002/er.1488
  • H. M. Ali and L. A. Mahdi, “Exergy analysis of chest freezer working with R-134a and R-600a at steady state conditions,” Int. J. Energy Prod. Manag., vol. 8, no. 2, pp. 63–70, 2023. doi: 10.18280/ijepm.080202
  • M. Pitarch, E. Hervas-Blasco, E. Navarro-Peris, and J. M. Corberan, “Exergy analysis on a heat pump working between a heat sink and a heat source of finite heat capacity rate,” Int. J. Refrig., vol. 99, pp. 337–350, 2019. doi: 10.1016/j.ijrefrig.2018.11.044
  • M. A. Rosen, I. Dincer, and M. Kanoglu, “Role of exergy in increasing efficiency and sustainability and reducing environmental impact,” Energy Policy, vol. 36, no. 1, pp. 128–137, 2008. doi: 10.1016/j.enpol.2007.09.006
  • H. Caliskan, A. Hepbasli, I. Dincer, and V. Maisotsenko, “Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle,” Int. J. Refrig., vol. 34, no. 4, pp. 980–990, 2011. doi: 10.1016/j.ijrefrig.2011.02.001
  • A. Mota-Babiloni, J. R. Barbosa Jr, P. Makhnatch, and J. A. Lozano, “Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems,” Renew. Sustain. Energy Rev., vol. 129, p. 109929, 2020. doi: 10.1016/j.rser.2020.109929

Yıl 2024, Cilt: 27 Sayı: 2, 10 – 18, 01.06.2024

https://doi.org/10.5541/ijot.1368985

Öz

Kaynakça

  • J. Gill and J. Singh, “Energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant,” Int. J. Refrig., vol. 84, pp. 287–299, 2017. doi: 10.1016/j.ijrefrig.2017.08.001
  • K. Protocol, “Kyoto protocol", UNFCCC Website.” 1997. Available online: http://unfccc.int/kyoto_protocol/items/2830
  • I. M. G. Almeida, C. R. F. Barbosa, and F. de A. O. Fontes, “Thermodynamic and thermophysical assessment of hydrocarbons application in househould refrigerator,” Rev. Eng. Térmica, vol. 9, no. 1–2, pp. 19–27, 2010. doi: 10.5380/reterm.v9i1-2.61926
  • G. Venkatarathnam and S. Srinivasa Murthy, “Refrigerants for vapour compression refrigeration systems,” Resonance, vol. 17, pp. 139–162, 2012. doi: 10.1007/s12045-012-0015-x
  • K. Harby, “Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview,” Renew. Sustain. Energy Rev., vol. 73, pp. 1247–1264, 2017. doi: 10.1016/j.rser.2017.02.039
  • R. Zhai, Z. Yang, Y. Zhang, Z. Lv, and B. Feng, “Effect of temperature and humidity on the flammability limits of hydrocarbons,” Fuel, vol. 270, p. 117442, 2020. doi: 10.1016/j.fuel.2020.117442
  • M. Mohanraj, S. Jayaraj, C. Muraleedharan, and P. Chandrasekar, “Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator,” Int. J. Therm. Sci., vol. 48, no. 5, pp. 1036–1042, 2009. doi: 10.1016/j.ijthermalsci.2008.08.001
  • W. S. Mohammad and A. O. Jassim, “Experimental and Theoretical Investigation of Propane/Butane and Propane/Isobutane Mixtures as an Alternative to R134a in a Domestic Refrigerator,” Eng. Technol. J., vol. 32, no. 5 Part (A) Engineering, 2014.
  • K. Chopra, V. Sahni, and R. S. Mishra, “Energy, exergy and sustainability analysis of two-stage vapour compression refrigeration system,” J. Therm. Eng., vol. 1, no. 4, pp. 440–445, 2015. doi: 10.18186/jte.95418
  • C. H. de Paula, W. M. Duarte, T. T. M. Rocha, R. N. de Oliveira, and A. A. T. Maia, “Optimal design and environmental, energy and exergy analysis of a vapor compression refrigeration system using R290, R1234yf, and R744 as alternatives to replace R134a,” Int. J. Refrig., vol. 113, pp. 10–20, 2020. doi: 10.1016/j.ijrefrig.2020.01.012
  • E. Gundabattini, C. Masselli, D. S. Gnanaraj, S. Tadikonda, V. Karnati, and V. K. Vemireddy, “Improving the Energy Performances of the Refrigeration Systems with Subcooling Using the Eco-Friendly Refrigerant R600a: Initial Experimental Results.,” Instrumentation, Mes. Métrologies, vol. 19, no. 2, pp. 73–81, 2020. doi: 10.18280/i2m.190201
  • D. Sánchez, R. Cabello, R. Llopis, I. Arauzo, J. Catalán-Gil, and E. Torrella, “Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives,” Int. J. Refrig., vol. 74, pp. 269–282, 2017. doi: 10.1016/j.ijrefrig.2016.09.020
  • M. Shaik Sk and K. Srinivas, “Theoretical analysis of a Low GWP Refrigerants as a Drop in substitute of R134a in a Domestic Refrigerator,” Iran. J. Energy & Environ., vol. 9, no. 2, pp. 130–136, 2018. doi: 10.5829/ijee.2018.09.02.08
  • S. S. Hastak and J. M. Kshirsagar, “Comparative performance analysis of R600a and R436a as an alternative of R134a refrigerant in a domestic refrigerator,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 377, no. 1, p. 12047. doi: 10.1088/1757-899X/377/1/012047
  • P. Siddegowda, G. Mundur Sannappagowda, V. Jain, and S. Javare Gowda, “Hydrocarbons as Alternate Refrigerants to Replace R134a in Domestic Refrigerators.,” Rev. des Compos. des Matériaux Avancés, vol. 29, no. 2, pp.95–99, 2019. doi: 10.18280/rcma.290204
  • C. H. de Paula, W. M. Duarte, T. T. M. Rocha, R. N. de Oliveira, R. de Paoli Mendes, and A. A. T. Maia, “Thermo-economic and environmental analysis of a small capacity vapor compression refrigeration system using R290, R1234yf, and R600a,” Int. J. Refrig., vol. 118, pp. 250–260, 2020. doi: 10.1016/j.ijrefrig.2020.07.003
  • M. Ghanbarpour, A. Mota-Babiloni, B. E. Badran, and R. Khodabandeh, “Energy, exergy, and environmental (3E) analysis of hydrocarbons as low GWP alternatives to R134a in vapor compression refrigeration configurations,” Appl. Sci., vol. 11, no. 13, p. 6226, 2021. doi: 10.3390/app11136226
  • S. Sharma and V. K. Dwivedi, “Comparative Assessment of Environment-Friendly Alternative to R134a in Vapour Compression Refrigeration System using Exergy Destruction,” J. Eng. Res., vol. 10, 2022. doi: 10.36909/jer.ICMET.17205
  • A. Kilicarslan and N. Müller, “A comparative study of water as a refrigerant with some current refrigerants,” Int. J. energy Res., vol. 29, no. 11, pp. 947–959, 2005. doi: 10.1002/er.1084
  • ASHRAE, ASHRAE fundamentals (SI). 2017.
  • NIST, NIST reference fluid thermodynamic and transport properties database (REFPROP), v. 9.0. National Institute of Standards and Technology, Gaithersburg, MD, 2010.
  • J. C. Calm, G. C. Hourahan, A. Vonsild, D. Clodic, and D. Colbourne, 2014 Report of the refrigeration, air conditioning, and heat pumps technical options committee, Ch. 2: Refrigerants. United Nations Environment Programme (UNEP) Ozone Secretariat, Nairobi, 2015.
  • IPCC, Climate change 2013: The physical science basis. Cambridge University Press, 2013.
  • M. A. Islam, K. Srinivasan, K. Thu, and B. B. Saha, “Assessment of total equivalent warming impact (TEWI) of supermarket refrigeration systems,” Int. J. Hydrogen Energy, vol. 42, no. 43, pp. 26973–26983, 2017. doi:10.1016/j.ijhydene.2017.07.035
  • Carbonfootprint, CARBON FOOTPRINT COUNTRY SPECIFIC ELECTRICITY GRID GREENHOUSE GAS EMISSION FACTORS Last Updated: March 2022. March, pp. 1–11, 2022. https://www.carbonfootprint.com
  • M. Direk, A. Kelesoglu, and A. I. Ahmet, “Theoretical performance analysis of an R1234yf refrigeration cycle based on the effectiveness of internal heat exchanger,” Hittite J. Sci. Eng., vol. 4, no. 1, pp. 23–30, 2017. doi: 10.17350/HJSE19030000044
  • Q. Chen, L. Zhou, G. Yan, and J. Yu, “Theoretical investigation on the performance of a modified refrigeration cycle with R170/R290 for freezers application,” Int. J. Refrig., vol. 104, pp. 282–290, 2019. doi: 10.1016/j.ijrefrig.2019.05.037
  • S. Khatoon and M. N. Karimi, “Thermodynamic analysis of two evaporator vapor compression refrigeration system with low GWP refrigerants in automobiles,” Int. J. Air-Conditioning Refrig., vol. 31, no. 1, p. 2, 2023. doi: 10.1007/s44189-022-00017-1
  • M. Elakdhar, E. Nehdi, and L. Kairouani, “Analysis of a compression/ejection cycle for domestic refrigeration,” Ind. & Eng. Chem. Res., vol. 46, no. 13, pp. 4639–4644, 2007. doi: 10.1021/ie070377e
  • H. M. Ali, S. A. Kadhim, and O. A. A. M. Ibrahim, “Evaluating Refrigerant Purity Characteristics: An Experimental Approach to Assess Impact on Vapor-Compression Refrigeration System Performance,” Int. J. heat & Technol., vol. 41, no. 4, pp. 883–890, 2023. doi: 10.18280/ijht.410410
  • N. Bilir and H. K. Ersoy, “Performance improvement of the vapour compression refrigeration cycle by a two-phase constant area ejector,” Int. J. energy Res., vol. 33, no. 5, pp. 469–480, 2009. doi: 10.1002/er.1488
  • H. M. Ali and L. A. Mahdi, “Exergy analysis of chest freezer working with R-134a and R-600a at steady state conditions,” Int. J. Energy Prod. Manag., vol. 8, no. 2, pp. 63–70, 2023. doi: 10.18280/ijepm.080202
  • M. Pitarch, E. Hervas-Blasco, E. Navarro-Peris, and J. M. Corberan, “Exergy analysis on a heat pump working between a heat sink and a heat source of finite heat capacity rate,” Int. J. Refrig., vol. 99, pp. 337–350, 2019. doi: 10.1016/j.ijrefrig.2018.11.044
  • M. A. Rosen, I. Dincer, and M. Kanoglu, “Role of exergy in increasing efficiency and sustainability and reducing environmental impact,” Energy Policy, vol. 36, no. 1, pp. 128–137, 2008. doi: 10.1016/j.enpol.2007.09.006
  • H. Caliskan, A. Hepbasli, I. Dincer, and V. Maisotsenko, “Thermodynamic performance assessment of a novel air cooling cycle: Maisotsenko cycle,” Int. J. Refrig., vol. 34, no. 4, pp. 980–990, 2011. doi: 10.1016/j.ijrefrig.2011.02.001
  • A. Mota-Babiloni, J. R. Barbosa Jr, P. Makhnatch, and J. A. Lozano, “Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems,” Renew. Sustain. Energy Rev., vol. 129, p. 109929, 2020. doi: 10.1016/j.rser.2020.109929

Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Sistemleri Mühendisliği (Diğer), Malzeme Mühendisliği (Diğer)
BölümAraştırma Makaleleri
Yazarlar

Saif Ali Kadhim University of Technology – Iraq 0000-0003-0359-5022 Iraq

Erken Görünüm Tarihi19 Şubat 2024
Yayımlanma Tarihi1 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 2

Kaynak Göster

APAAli Kadhim, S. (2024). Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator. International Journal of Thermodynamics, 27(2), 10-18. https://doi.org/10.5541/ijot.1368985
AMAAli Kadhim S. Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator. International Journal of Thermodynamics. Haziran 2024;27(2):10-18. doi:10.5541/ijot.1368985
ChicagoAli Kadhim, Saif. “Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants As Alternatives to R134a in Domestic Refrigerator”. International Journal of Thermodynamics 27, sy. 2 (Haziran 2024): 10-18. https://doi.org/10.5541/ijot.1368985.
EndNoteAli Kadhim S (01 Haziran 2024) Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator. International Journal of Thermodynamics 27 2 10–18.
IEEES. Ali Kadhim, “Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator”, International Journal of Thermodynamics, c. 27, sy. 2, ss. 10–18, 2024, doi: 10.5541/ijot.1368985.
ISNADAli Kadhim, Saif. “Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants As Alternatives to R134a in Domestic Refrigerator”. International Journal of Thermodynamics 27/2 (Haziran 2024), 10-18. https://doi.org/10.5541/ijot.1368985.
JAMAAli Kadhim S. Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator. International Journal of Thermodynamics. 2024;27:10–18.
MLAAli Kadhim, Saif. “Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants As Alternatives to R134a in Domestic Refrigerator”. International Journal of Thermodynamics, c. 27, sy. 2, 2024, ss. 10-18, doi:10.5541/ijot.1368985.
VancouverAli Kadhim S. Thermodynamic and Environmental Analysis of Hydrocarbon Refrigerants as Alternatives to R134a in Domestic Refrigerator. International Journal of Thermodynamics. 2024;27(2):10-8.

Download or read online: Click here