Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi

Yıl 2024, Cilt: 25 Sayı: 2, 166 – 175, 28.06.2024

https://doi.org/10.18182/tjf.1355275

Öz

Data obtained from continuous measurements of high-precision dendrometers offer information about radial stem growth and tree water relations in high resolution. In 2022, two long-term monitoring sites were established in Antalya as part of the “DenTRo” initiative: Point dendrometers were installed to measure stem radius changes in a mixed Cedrus libani (Taurus cedar)- Juniperus excelsa (Greek juniper) stand in the Elmalı Cedar Research Forest and in a pure Pinus brutia (Turkish pine) stand in the Bük Lütfü Büyükyıldırım Research Forest. This work presents the first results of stem radius change measurements covering the growing season of 2022. Seasonal dynamics of radial growth were modeled by Gompertz functions. Further, radial stem growth (GRO) and tree water deficit-induced stem shrinkage (TWD) were extracted from hourly stem radius change measurements, investigated for their patterns, and correlated with environmental variables. Radial stem growth in Turkish pine started in the first week of April, approximately three weeks earlier than cedar and juniper. Maximum GRO was also reached earlier in Turkish pine. In all three species, main stem growth happened before July after which all experienced longer periods of water limitations as measured by increasing TWD. Relative air humidity had a stronger positive effect on GRO in cedar and juniper, while in pine GRO and TWD were strongly positively correlated with precipitation and high temperatures, respectively. To provide more detailed and comprehensive information on how trees are affected by climate change, long-term monitoring sites in different forest ecosystems using ecophysiological methods such as dendrometers are needed.

Anahtar Kelimeler

Greek juniper, Stem radius change, Cambial activity, Turkish pine, Drought stress, Taurus cedar

Kaynakça

  • Akkemik, Ü., Yılmaz, H.Ç., Sevgi, O., 2007. Cambial activity of the sessile oak (Quercus petraea) in Belgrade forest, Istanbul. Turkish Journal of Agriculture and Forestry, 30(6): 429-438.
  • Anderegg W.R.L., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Shevliakova, E., Williams A.P., Wolf, A., Ziaco, E., Pacala, S., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247): 528-532.
  • Balekoglu, S., Caliskan, S., Makineci, E., Dirik, H., 2023. An experimental assessment of carbon and nitrogen allocation in Pinus pinea populations under drought stress and rewatering treatment. Environmental and Experimental Botany, 210, 105334.
  • Barraclough, A.D., Zweifel, R., Cusens, J., Leuzinger, S., 2019. Disentangling the net: concomitant xylem and over-bark size measurements reveal the phloem-generated turgor signal behind daytime stem swelling in the mangrove Avicennia marina. Functional Plant Biology, 46(5): 393-406.
  • Başaran, M.A., Başaran, S., Baş, N., Kacar, S., Tolunay, D., Makineci, E., Kavgacı, A., Deniz, G., 2008. Determining the actual state of Cedar Research Forest Elmalı by GIS based digital maps. Ormancılık Araştırma Enstitüsü, Teknik Bülten Serisi, No: 30, Antalya.
  • Başaran, S., Tolunay, D., Makineci, E., Başaran, M.A., Kavgacı, A., Çetin, A., Kacar, M.S., Baş, N., 2011. Determining the Actual State of Bük Lütfi Büyükyıldırım Research Forest By GIS Based Digital Maps. Ormancılık Araştırma Enstitüsü, Teknik Bülten Serisi, No: 44, Antalya.
  • Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N., Kahmen, A., 2016. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiology, 36(12): 1508-1519.
  • Camarero, J.J., Olano, J.M., Parras, A., 2010. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. The New Phytologist, 185(2): 471-480.
  • Cheng, C., Gordon, I.L., 2000. The Richards function and quantitative analysis of germination and dormancy in meadowfoam (Limnanthes alba). Seed Science Research, 10(03): 265-277.
  • Clonch, C., Huynh, M., Goto, B., Levin, A., Selker, J., Udell, C., 2021. High precision zero-friction magnetic dendrometer. HardwareX, 12(10): e00248.
  • Cuny, H. E., Rathgeber, C. B., Frank, D., Fonti, P., Mäkinen, H., Prislan, P., . . . Fournier, M., 2015. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 1(11): 15160.
  • Daudet, F.A., Améglio, T., Cochard, H., Archilla, O., Lacointe, A., 2004. Experimental analysis of the role of water and carbon in tree stem diameter variations. Journal of Experimental Botany, 56(409): 135-144.
  • Deligöz, A., Bayar, E., Karatepe, Y., Genç, M., 2019. Photosynthetic capacity, nutrient and water status following precommercial thinning in Anatolian black pine. Forest Ecology and Management, 451: 117533.
  • Deslauriers, A., Rossi, S., Anfodillo, T., 2007. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25(2): 113-124.
  • Deslauriers, A., Rossi, S., Anfodillo, T., Saracino, A., 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology, 28(6): 863-871.
  • Dietrich, L., Zweifel, R. and Kahmen, A., 2018. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiology, 38(7): 941-952.
  • Downes, G., Beadle, C., Worledge, D., 1999. Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees, 14(2): 102-111.
  • Drew, D. M., Downes, G. M., 2009. The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia, 27(2): 159-172.
  • Dukat, P., Kelly, J., Doerr, S.H., Edvardsson, J., Hölttä, T.S., Lehner, I., Lindroth, A., Santin, C., Kljun, N., 2024. Boreal forest tree growth and sap flow after a low-severity wildfire. Agricultural and Forest Meteorology, 347, 109899.
  • Ehrenberger, W., Rüger, S., Fitzke, R., Vollenweider, P., Günthardt-Goerg, M., Kuster, T., Zimmermann., U., Arend, M.., 2012. Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Functional Plant Biology, 39(4): 297-305.
  • Genc, M., Deligöz, A., Gültekin, H., 2005. Stress resistance of the Juniperus oxycedrus and J. foetidissima, J. excelsa, Pinus nigra subsp. pallasiana, Cedrus libani and Picea orientalis seedlings. Ladin Sempozyumu, 20-22 Ekim 2005, Trabzon, Türkiye, pp. 474-482.
  • Gruber, A., Strobl, S., Veit, B., Oberhuber, W., 2010. Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiology, 30(4): 490-501.
  • Güney, A., Gülsoy, S., Şentürk, Ö., Niessner, A., Küppers, M., 2019. Environmental control of daily stem radius increment in the montane conifer Cedrus libani. Journal of Forestry Research, 31(4): 1159-1171.
  • Güney, A., Küppers, M., Rathgeber, C., Şahin, M., Zimmermann, R., 2017. Intra-annual stem growth dynamics of Lebanon Cedar along climatic gradients. Trees, 31: 587–606.
  • Güney, A., Zweifel, R., Türkan, S., Zimmermann, R., Wachendorf, M., Güney, C.O., 2020. Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science, 77(4): 1-16.
  • Herzog, K.M., Häsler, R., Thum, R.J.T., 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees, 10: 94-101.
  • Huang, J. G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., . . . Ziaco, E., 2020. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences, 117(34): 20645-20652.
  • Köcher, P., Horna, V., Leuschner, C., 2012. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiology, 32: 1021-1032.
  • Lazzarin, M., Zweifel, R., Anten, N., Sterck, F.J., 2018. Does phloem osmolality affect diurnal diameter changes of twigs but not of stems in Scots pine? Tree Physiology, 39(2): 275-283.
  • Martínez‐Sancho, E., Treydte, K., Lehmann, M. M., Rigling, A., Fonti, P., 2022. Drought impacts on tree carbon sequestration and water use–evidence from intra‐annual tree‐ring characteristics. New Phytologist, 236(1): 58-70.
  • Moran, E., Lauder, J., Musser, C., Stathos, A., Shu, M., 2017. The genetics of drought tolerance in conifers. New Phytologist, 216(4): 1034-1048.
  • Oberhuber, W., Hammerle, A., Kofler, W., 2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science, 6:703.
  • Özçelik, M.S., Şengönül, K., Gökbulak, F., 2016. Orman ağaçlarında bitki özsuyu akış ölçüm yöntemleriyle transpirasyonun belirlenmesi ve havza yönetimi çalışmaları için önemi. Turkish Journal of Forestry, 17(2): 208-214.
  • Rigling, A., Bigler, C., Eilmann, B., Feldmeyer‐Christe, E., Gimmi, U., Ginzler, C., Graf, U., Mayer, P., Vacchiano, G., Weber, P., 2013. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology, 19(1): 229-240.
  • Rossi, S., Anfodillo, T., Menardi, R., 2006. Trephor: a new tool for sampling microcores from tree stems. Iawa Journal, 27(1): 89-97.
  • Rossi, S., Deslauriers, A., 2007. Intra-annual time scales in tree rings. Dendrochronologia, 25(2): 75-77.
  • Rossi, S., Deslauriers, A., Anfodillo, T., Carraro, V., 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 152(1): 1-12.
  • Rossi, S., Deslauriers, A., Anfodillo, T., Morin, H., Saracino, A., Motta, R., Borghetti, M., 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. The New Phytologist, 170(2): 301-310.
  • Rossi, S., Deslauriers, A., Morin, H., 2003. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia, 21(1): 33-39.
  • Saderi, S., Rathgeber, C.B., Rozenberg, P., Fournier, M., 2019. Phenology of wood formation in larch (Larix decidua Mill.) trees growing along a 1000-m elevation gradient in the French Southern Alps. Annals of Forest Science, 76(3): 1-17.
  • Salomon, R. L., Peters, R. L., Zweifel, R., Sass-Klaassen, U. G. W., Stegehuis, A. I., Smiljanic, M., . . . Steppe, K., 2022. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature communications, 13(1): 1-11.
  • Scharnweber, T., Smiljanic, M., Cruz-García, R., Manthey, M., Wilmking, M., 2020. Tree growth at the end of the 21st century-the extreme years 2018/19 as template for future growth conditions. Environmental Research Letters, 15(7): 074022.
  • Scholander, P.F., Bradstreet, E.D., Hemmingsen, E., Hammel, H., 1965. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science, 148(3668): 339-346.
  • Urrutia-Jalabert, R., Rossi, S., Deslauriers, A., Malhi, Y., Lara, A., 2015. Environmental correlates of stem radius change in the endangered Fitzroya cupressoides forests of southern Chile. Agricultural and Forest Meteorology, 200: 209-221.
  • Vieira, J., Rossi, S., Campelo, F., Freitas, H., Nabais, C., 2013. Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agricultural and Forest Meteorology, 180: 173-181.
  • Vieira, J., Rossi, S., Campelo, F., Freitas, H., Nabais, C., 2014. Xylogenesis of Pinus pinaster under a Mediterranean climate. Annals of Forest Science, 71(1): 71-80.
  • Zeide, B., 1993. Analysis of growth equations. Forest Science 39: 594–616.
  • Ziaco, E., Truettner, C., Biondi, F. and Bullock, S., 2018. Moisture‐driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant, Cell & Environment, 41(4): 823-836.
  • Zweifel, R., 2016. Radial stem variations–a source of tree physiological information not fully exploited yet. Plant, Cell & Environment, 39(2): 231-232.
  • Zweifel, R., Haeni, M., Buchmann, N., Eugster, W., 2016. Are trees able to grow in periods of stem shrinkage? New Phytologist, 211(3): 839-849.
  • Zweifel, R., Häsler, R., 2000. Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agricultural and Forest Meteorology, 102(4): 213-222.
  • Zweifel, R., Item, H., Häsler, R., 2000. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15(1): 50-57.
  • Zweifel, R., Zimmermann, L., Newbery, D., 2005. Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology, 25(2): 147-156.
  • Zweifel, R., Zimmermann, L., Zeugin, F., Newbery, D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57(6): 1445-1459.

Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi

Yıl 2024, Cilt: 25 Sayı: 2, 166 – 175, 28.06.2024

https://doi.org/10.18182/tjf.1355275

Öz

Yüksek hassasiyetli dendrometrelerin sürekli ölçümlerinden elde edilen veriler, radyal gövde büyümesi ve ağaç su ilişkileri hakkında yüksek çözünürlükte bilgi sunar. 2022 yılında, “DenTRo” girişiminin bir parçası olarak Antalya’da iki uzun vadeli izleme sahası kurulmuştur: Elmalı Sedir Araştırma Ormanı’ndaki bir Cedrus libani A. Rich (Toros sediri)- Juniperus excelsa (Boylu ardıç) karışık meşceresi ve Bük Lütfü Büyükyıldırım Araştırma Ormanı’ndaki saf bir Pinus brutia (kızılçam) meşceresinde saatlik gövde yarıçap değişimlerini ölçmek için nokta dendrometreler kullanılmıştır. Bu çalışma, 2022 büyüme sezonunu kapsayan gövde yarıçap değişimi ölçümlerinin ilk sonuçlarını sunmaktadır. Radyal büyümenin yıl içerisindeki seyri Gompertz büyüme fonksiyonu ile modellenmiştir. Ayrıca, radyal gövde büyümesi (GRO) ve gövde çapının daralmasına sebep olan ağaç su açığı (TWD) saatlik gövde yarıçap değişimi ölçümlerinden hesaplanmıştır. GRO ve TWD’nin yıl içerisindeki seyri türler arasında karşılaştırılmıştır ve korelasyon analizi ile meteorolojik değişkenlerle ilişkilendirilmiştir. Kızılçamda radyal gövde büyümesi, sedir ve boylu ardıça göre yaklaşık üç hafta önce, Nisan ayının ilk haftasında başlamıştır. Kızılçam ayrıca maksimum GRO değerlerine de daha erken ulaşmıştır. Her üç türde de ana gövde büyümesi temmuz ayından önce gerçekleşmiş, ardından artan TWD ile ölçüldüğü üzere hepsi uzun süreli su kısıtlamaları yaşamıştır. Bağıl nem sedir ve boylu ardıçta GRO üzerinde daha güçlü bir pozitif etkiye sahipken, kızılçamda GRO ve TWD sırasıyla yağış ve yüksek sıcaklıklarla güçlü pozitif korelasyon göstermiştir. Ağaçların iklim değişikliğinden nasıl etkilendiği hakkında daha ayrıntılı ve kapsamlı bilgiler edinilmesine olanak sağlayabilmek için, farklı orman ekosistemlerinde dendrometre gibi ekofizyolojik yöntemler kullanan uzun süreli izleme sahalarının kurulmasına ihtiyaç vardır.

Anahtar Kelimeler

Boylu ardıç, Gövde yarıçap değişimi, Kambiyum faaliyeti, Kızılçam, Kuraklık stresi, Toros sediri

Kaynakça

  • Akkemik, Ü., Yılmaz, H.Ç., Sevgi, O., 2007. Cambial activity of the sessile oak (Quercus petraea) in Belgrade forest, Istanbul. Turkish Journal of Agriculture and Forestry, 30(6): 429-438.
  • Anderegg W.R.L., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Shevliakova, E., Williams A.P., Wolf, A., Ziaco, E., Pacala, S., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247): 528-532.
  • Balekoglu, S., Caliskan, S., Makineci, E., Dirik, H., 2023. An experimental assessment of carbon and nitrogen allocation in Pinus pinea populations under drought stress and rewatering treatment. Environmental and Experimental Botany, 210, 105334.
  • Barraclough, A.D., Zweifel, R., Cusens, J., Leuzinger, S., 2019. Disentangling the net: concomitant xylem and over-bark size measurements reveal the phloem-generated turgor signal behind daytime stem swelling in the mangrove Avicennia marina. Functional Plant Biology, 46(5): 393-406.
  • Başaran, M.A., Başaran, S., Baş, N., Kacar, S., Tolunay, D., Makineci, E., Kavgacı, A., Deniz, G., 2008. Determining the actual state of Cedar Research Forest Elmalı by GIS based digital maps. Ormancılık Araştırma Enstitüsü, Teknik Bülten Serisi, No: 30, Antalya.
  • Başaran, S., Tolunay, D., Makineci, E., Başaran, M.A., Kavgacı, A., Çetin, A., Kacar, M.S., Baş, N., 2011. Determining the Actual State of Bük Lütfi Büyükyıldırım Research Forest By GIS Based Digital Maps. Ormancılık Araştırma Enstitüsü, Teknik Bülten Serisi, No: 44, Antalya.
  • Brinkmann, N., Eugster, W., Zweifel, R., Buchmann, N., Kahmen, A., 2016. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiology, 36(12): 1508-1519.
  • Camarero, J.J., Olano, J.M., Parras, A., 2010. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. The New Phytologist, 185(2): 471-480.
  • Cheng, C., Gordon, I.L., 2000. The Richards function and quantitative analysis of germination and dormancy in meadowfoam (Limnanthes alba). Seed Science Research, 10(03): 265-277.
  • Clonch, C., Huynh, M., Goto, B., Levin, A., Selker, J., Udell, C., 2021. High precision zero-friction magnetic dendrometer. HardwareX, 12(10): e00248.
  • Cuny, H. E., Rathgeber, C. B., Frank, D., Fonti, P., Mäkinen, H., Prislan, P., . . . Fournier, M., 2015. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 1(11): 15160.
  • Daudet, F.A., Améglio, T., Cochard, H., Archilla, O., Lacointe, A., 2004. Experimental analysis of the role of water and carbon in tree stem diameter variations. Journal of Experimental Botany, 56(409): 135-144.
  • Deligöz, A., Bayar, E., Karatepe, Y., Genç, M., 2019. Photosynthetic capacity, nutrient and water status following precommercial thinning in Anatolian black pine. Forest Ecology and Management, 451: 117533.
  • Deslauriers, A., Rossi, S., Anfodillo, T., 2007. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25(2): 113-124.
  • Deslauriers, A., Rossi, S., Anfodillo, T., Saracino, A., 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology, 28(6): 863-871.
  • Dietrich, L., Zweifel, R. and Kahmen, A., 2018. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiology, 38(7): 941-952.
  • Downes, G., Beadle, C., Worledge, D., 1999. Daily stem growth patterns in irrigated Eucalyptus globulus and E. nitens in relation to climate. Trees, 14(2): 102-111.
  • Drew, D. M., Downes, G. M., 2009. The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia, 27(2): 159-172.
  • Dukat, P., Kelly, J., Doerr, S.H., Edvardsson, J., Hölttä, T.S., Lehner, I., Lindroth, A., Santin, C., Kljun, N., 2024. Boreal forest tree growth and sap flow after a low-severity wildfire. Agricultural and Forest Meteorology, 347, 109899.
  • Ehrenberger, W., Rüger, S., Fitzke, R., Vollenweider, P., Günthardt-Goerg, M., Kuster, T., Zimmermann., U., Arend, M.., 2012. Concomitant dendrometer and leaf patch pressure probe measurements reveal the effect of microclimate and soil moisture on diurnal stem water and leaf turgor variations in young oak trees. Functional Plant Biology, 39(4): 297-305.
  • Genc, M., Deligöz, A., Gültekin, H., 2005. Stress resistance of the Juniperus oxycedrus and J. foetidissima, J. excelsa, Pinus nigra subsp. pallasiana, Cedrus libani and Picea orientalis seedlings. Ladin Sempozyumu, 20-22 Ekim 2005, Trabzon, Türkiye, pp. 474-482.
  • Gruber, A., Strobl, S., Veit, B., Oberhuber, W., 2010. Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiology, 30(4): 490-501.
  • Güney, A., Gülsoy, S., Şentürk, Ö., Niessner, A., Küppers, M., 2019. Environmental control of daily stem radius increment in the montane conifer Cedrus libani. Journal of Forestry Research, 31(4): 1159-1171.
  • Güney, A., Küppers, M., Rathgeber, C., Şahin, M., Zimmermann, R., 2017. Intra-annual stem growth dynamics of Lebanon Cedar along climatic gradients. Trees, 31: 587–606.
  • Güney, A., Zweifel, R., Türkan, S., Zimmermann, R., Wachendorf, M., Güney, C.O., 2020. Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science, 77(4): 1-16.
  • Herzog, K.M., Häsler, R., Thum, R.J.T., 1995. Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration. Trees, 10: 94-101.
  • Huang, J. G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., . . . Ziaco, E., 2020. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences, 117(34): 20645-20652.
  • Köcher, P., Horna, V., Leuschner, C., 2012. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiology, 32: 1021-1032.
  • Lazzarin, M., Zweifel, R., Anten, N., Sterck, F.J., 2018. Does phloem osmolality affect diurnal diameter changes of twigs but not of stems in Scots pine? Tree Physiology, 39(2): 275-283.
  • Martínez‐Sancho, E., Treydte, K., Lehmann, M. M., Rigling, A., Fonti, P., 2022. Drought impacts on tree carbon sequestration and water use–evidence from intra‐annual tree‐ring characteristics. New Phytologist, 236(1): 58-70.
  • Moran, E., Lauder, J., Musser, C., Stathos, A., Shu, M., 2017. The genetics of drought tolerance in conifers. New Phytologist, 216(4): 1034-1048.
  • Oberhuber, W., Hammerle, A., Kofler, W., 2015. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science, 6:703.
  • Özçelik, M.S., Şengönül, K., Gökbulak, F., 2016. Orman ağaçlarında bitki özsuyu akış ölçüm yöntemleriyle transpirasyonun belirlenmesi ve havza yönetimi çalışmaları için önemi. Turkish Journal of Forestry, 17(2): 208-214.
  • Rigling, A., Bigler, C., Eilmann, B., Feldmeyer‐Christe, E., Gimmi, U., Ginzler, C., Graf, U., Mayer, P., Vacchiano, G., Weber, P., 2013. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology, 19(1): 229-240.
  • Rossi, S., Anfodillo, T., Menardi, R., 2006. Trephor: a new tool for sampling microcores from tree stems. Iawa Journal, 27(1): 89-97.
  • Rossi, S., Deslauriers, A., 2007. Intra-annual time scales in tree rings. Dendrochronologia, 25(2): 75-77.
  • Rossi, S., Deslauriers, A., Anfodillo, T., Carraro, V., 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 152(1): 1-12.
  • Rossi, S., Deslauriers, A., Anfodillo, T., Morin, H., Saracino, A., Motta, R., Borghetti, M., 2006. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. The New Phytologist, 170(2): 301-310.
  • Rossi, S., Deslauriers, A., Morin, H., 2003. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia, 21(1): 33-39.
  • Saderi, S., Rathgeber, C.B., Rozenberg, P., Fournier, M., 2019. Phenology of wood formation in larch (Larix decidua Mill.) trees growing along a 1000-m elevation gradient in the French Southern Alps. Annals of Forest Science, 76(3): 1-17.
  • Salomon, R. L., Peters, R. L., Zweifel, R., Sass-Klaassen, U. G. W., Stegehuis, A. I., Smiljanic, M., . . . Steppe, K., 2022. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature communications, 13(1): 1-11.
  • Scharnweber, T., Smiljanic, M., Cruz-García, R., Manthey, M., Wilmking, M., 2020. Tree growth at the end of the 21st century-the extreme years 2018/19 as template for future growth conditions. Environmental Research Letters, 15(7): 074022.
  • Scholander, P.F., Bradstreet, E.D., Hemmingsen, E., Hammel, H., 1965. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science, 148(3668): 339-346.
  • Urrutia-Jalabert, R., Rossi, S., Deslauriers, A., Malhi, Y., Lara, A., 2015. Environmental correlates of stem radius change in the endangered Fitzroya cupressoides forests of southern Chile. Agricultural and Forest Meteorology, 200: 209-221.
  • Vieira, J., Rossi, S., Campelo, F., Freitas, H., Nabais, C., 2013. Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agricultural and Forest Meteorology, 180: 173-181.
  • Vieira, J., Rossi, S., Campelo, F., Freitas, H., Nabais, C., 2014. Xylogenesis of Pinus pinaster under a Mediterranean climate. Annals of Forest Science, 71(1): 71-80.
  • Zeide, B., 1993. Analysis of growth equations. Forest Science 39: 594–616.
  • Ziaco, E., Truettner, C., Biondi, F. and Bullock, S., 2018. Moisture‐driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant, Cell & Environment, 41(4): 823-836.
  • Zweifel, R., 2016. Radial stem variations–a source of tree physiological information not fully exploited yet. Plant, Cell & Environment, 39(2): 231-232.
  • Zweifel, R., Haeni, M., Buchmann, N., Eugster, W., 2016. Are trees able to grow in periods of stem shrinkage? New Phytologist, 211(3): 839-849.
  • Zweifel, R., Häsler, R., 2000. Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agricultural and Forest Meteorology, 102(4): 213-222.
  • Zweifel, R., Item, H., Häsler, R., 2000. Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Trees, 15(1): 50-57.
  • Zweifel, R., Zimmermann, L., Newbery, D., 2005. Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology, 25(2): 147-156.
  • Zweifel, R., Zimmermann, L., Zeugin, F., Newbery, D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57(6): 1445-1459.

Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ağaç Beslenme ve Fizyolojisi
BölümOrijinal Araştırma Makalesi
Yazarlar

Aylin Güney İzmir Katip Çelebi Üniversitesi 0000-0002-8955-2770 Türkiye

Fatma Gökçe Cankara Batı Akdeniz Ormancılık Araştırma Enstitüsü 0000-0001-8756-7381 Türkiye

Burak Bahar İZMİR KATİP ÇELEBİ ÜNİVERSİTESİ 0000-0002-3292-8052 Türkiye

Erken Görünüm Tarihi28 Haziran 2024
Yayımlanma Tarihi28 Haziran 2024
Kabul Tarihi17 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 2

Kaynak Göster

APAGüney, A., Cankara, F. G., & Bahar, B. (2024). Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi. Turkish Journal of Forestry, 25(2), 166-175. https://doi.org/10.18182/tjf.1355275
AMAGüney A, Cankara FG, Bahar B. Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi. Turkish Journal of Forestry. Haziran 2024;25(2):166-175. doi:10.18182/tjf.1355275
ChicagoGüney, Aylin, Fatma Gökçe Cankara, ve Burak Bahar. “Yüksek Hassasiyetli Dendrometreler kullanılarak Cedrus Libani, Juniperus Excelsa Ve Pinus brutia’da Radyal büyüme Ve ağaç Su açığının değerlendirilmesi”. Turkish Journal of Forestry 25, sy. 2 (Haziran 2024): 166-75. https://doi.org/10.18182/tjf.1355275.
EndNoteGüney A, Cankara FG, Bahar B (01 Haziran 2024) Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi. Turkish Journal of Forestry 25 2 166–175.
IEEEA. Güney, F. G. Cankara, ve B. Bahar, “Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi”, Turkish Journal of Forestry, c. 25, sy. 2, ss. 166–175, 2024, doi: 10.18182/tjf.1355275.
ISNADGüney, Aylin vd. “Yüksek Hassasiyetli Dendrometreler kullanılarak Cedrus Libani, Juniperus Excelsa Ve Pinus brutia’da Radyal büyüme Ve ağaç Su açığının değerlendirilmesi”. Turkish Journal of Forestry 25/2 (Haziran 2024), 166-175. https://doi.org/10.18182/tjf.1355275.
JAMAGüney A, Cankara FG, Bahar B. Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi. Turkish Journal of Forestry. 2024;25:166–175.
MLAGüney, Aylin vd. “Yüksek Hassasiyetli Dendrometreler kullanılarak Cedrus Libani, Juniperus Excelsa Ve Pinus brutia’da Radyal büyüme Ve ağaç Su açığının değerlendirilmesi”. Turkish Journal of Forestry, c. 25, sy. 2, 2024, ss. 166-75, doi:10.18182/tjf.1355275.
VancouverGüney A, Cankara FG, Bahar B. Yüksek hassasiyetli dendrometreler kullanılarak Cedrus libani, Juniperus excelsa ve Pinus brutia’da radyal büyüme ve ağaç su açığının değerlendirilmesi. Turkish Journal of Forestry. 2024;25(2):166-75.

Download or read online: Click here